[1] Boyd D S, Petitcolin F. Remote sensing of the terrestrial environment using middle infrared radiation (3.0–5.0 μm) [J]. International Journal of Remote Sensing, 2004, 25(17): 3343-3368. doi:  10.1080/01431160310001654356
[2] Godard A. Infrared (2–12 μm) solid-state laser sources: a review [J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128. doi:  10.1016/j.crhy.2007.09.010
[3] Vaicikauskas V, Kabelka V, Kuprionis Z, et al. Infrared DIAL for remote sensing of atmospheric pollutants[C]//Proc of SPIE, 2005, 5958: 59581K.
[4] Vaicikauskas V, Kuprionis Z, Kaucikas M, et al. Mid-infrared all solid state DIAL for remote sensing of hazardous chemical agents[C]//Proc of SPIE, 2006, 6214: 62140E.
[5] Mitev V, Babichenko S, Bennes J, et al. Mid-IR DIAL for high-resolution mapping of explosive precursors[C]//Proc of SPIE, 2013, 8894: 88940S.
[6] Jiao Z, He G, Guo J, et al. High average power 2 μm generation using an intracavity PPMgLN optical parametric oscillator [J]. Optics Letters, 2012, 37(1): 64-66. doi:  10.1364/OL.37.000064
[7] Guo J, He G Y, Zhang B F, et al. Compact efficient 2.1 m intracavity MgO: PPLN OPO with a VBG output coupler [J]. IEEE Photonics Technology Letters, 2015, 27(6): 573-576. doi:  10.1109/LPT.2014.2384512
[8] Yu H, Zheng X, Yin K, et al. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets [J]. Optical Materials Express, 2016, 6(2): 603-609. doi:  10.1364/OME.6.000603
[9] 赵本瑞. 高功率Ho: YAG MOPA及长波红外OPO激光系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

Zhao Benrui. Study on high power Ho: YAG MOPA and long infrared OPO laser system[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
[10] Coluccelli N, Lagatsky A, Di Lieto A, et al. Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm [J]. Optics Letters, 2011, 36(16): 3209-3211. doi:  10.1364/OL.36.003209
[11] Taczak T M, Killinger D K. Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O [J]. Applied Optics, 1998, 37(36): 8460-8476. doi:  10.1364/AO.37.008460
[12] Gibert F, Pellegrino J, Edouart D, et al. 2-μm double-pulse single-frequency Tm:fiber laser pumped Ho:YLF laser for a space-borne CO2 lidar [J]. Applied Optics, 2018, 57(36): 10370-10379. doi:  10.1364/AO.57.010370
[13] Duan X, Yuan J, Cui Z, et al. Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm [J]. Applied Optics, 2016, 55(8): 1953-1956. doi:  10.1364/AO.55.001953
[14] Cui Z, Duan X M, Yao B Q, et al. Doubly Q-switched Ho:LuAG laser with acoustic-optic modulator and Cr2+:ZnS saturable absorber [J]. Applied Optics, 2015, 54(34): 10272-10276. doi:  10.1364/AO.54.010272
[15] Budni P A, Pomeranz L A, Miller C A, et al. CW and Q-switched Ho: YAG pumped by Tm: YALO[C]//Advanced Solid State Lasers, 1998: ML4.
[16] Bollig C, Hayward R A, Clarkson W A, et al. 2 W Ho:YAG laser intracavity pumped by a diode-pumped Tm: YAG laser [J]. Optics Letters, 1998, 23(22): 1757-1759. doi:  10.1364/OL.23.001757
[17] Lamrini S. Koopmann P, Schafer M, et al. Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm [J]. Applied Physics B, 2012, 106(2): 315-319. doi:  10.1007/s00340-011-4670-5
[18] Shen Y J, Yao B Q, Duan X M, et al. 103W in-band dual-end-pumped Ho:YAG laser [J]. Optics Letters, 2012, 37(17): 3558. doi:  10.1364/OL.37.003558
[19] Fonum H, Lippert E, Haakestad M W. 550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm fiber laser [J]. Optics Letters, 2013, 38(11): 1884-1886. doi:  10.1364/OL.38.001884
[20] Zhao B R, Yao B Q, Qian C P, et al. 231 W dual-end-pumped Ho:YAG MOPA system and its application to a mid-infrared ZGP OPO [J]. Optics Letters, 2018, 43(24): 5989-5992. doi:  10.1364/OL.43.005989
[21] 钱传鹏. 高功率Ho: YAG振荡器及泵浦的中长波红外固体激光器研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

Qian Chuanpeng. Research on the high power Ho: YAG laser and its application to pump the mid-and long-wave infrared laser[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
[22] 陈毅, 刘高佑, 王瑞雪, 等. 非线性晶体应用于中长波红外固体激光器的研究进展[J]. 人工晶体学报, 2020, 49(8): 1379-1395. doi:  10.3969/j.issn.1000-985X.2020.08.004

Yi Chen, Liu Gaoyou, Wang Ruixue, et al. Research progress of nonlinear crystal applied in mid and long-wave infrared solid-state laser [J]. Journal of Synthetic Crystals, 2020, 49(8): 1379-1395. (in Chinese) doi:  10.3969/j.issn.1000-985X.2020.08.004
[23] Zelmon D E, Hanning E A, Schunemann P G. Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices [J]. J Opt Soc Am B, 2001, 18(9): 1307-1310. doi:  10.1364/JOSAB.18.001307
[24] Vodopyanov K, Voevodin V. Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm [J]. Optics Communications, 1995, 117(3-4): 277-282. doi:  10.1016/0030-4018(95)00173-6
[25] Kenji F, Michael T H, Azusa O, et al. Tunable mid-infrared (6.3–12 μm) optical vortex pulse generation [J]. Optics Express, 2014, 22(21): 26351-26357. doi:  10.1364/OE.22.026351
[26] Haakestad M W, Fonnum H, Lippert E. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2 [J]. Optics Express, 2014, 22(7): 8556-8564. doi:  10.1364/OE.22.008556
[27] Fonnum H, Bakkland A, Haakestad M W. Optical parametric oscillator at 8 μm with high pulse energy and good beam quality[C]//Conference on Lasers and Electro-Optics (CLEO), 2016: paper MS4C.5.
[28] Sanchez D, Hemmer M, Baudisch M, et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm [J]. Optica, 2016, 3(2): 147-150. doi:  10.1364/OPTICA.3.000147
[29] Qian C P, Yao B Q, Zhao B R, et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation [J]. Optics Letters, 2019, 44(3): 715-718. doi:  10.1364/OL.44.000715
[30] Liu G, Chen Y, Yao B, et al. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals [J]. Applied Physics B, 2019, 125(12): 233. doi:  10.1007/s00340-019-7347-0
[31] Liu G, Chen Y, Yao B, et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 µm [J]. Optics Letters, 2020, 45(8): 2347-2350. doi:  10.1364/OL.389603