[1] Lv D R, Chen Z Y, Guo X, et al. Recent progress in near space atmospheric environment study [J]. Advances in Mechanics, 2009, 39(6): 674-682. (in Chinese) doi:  10.3321/j.issn:1000-0992.2009.06.008
[2] Xiao C Y, Hu X, Wang B, et al. Quantitative studies on the variations of near space atmospheric fluctuation [J]. Chinese Journal of Geophysics, 2016, 59(4): 1211-1221. (in Chinese) doi:  10.6038/cjg20160404
[3] Shi J X, Song X Q, Wu S H, et al. Doppler lidar telemetry for wind turbine vibration [J]. Optics and Precision Engineering, 2020, 28(10): 2180-2191. (in Chinese) doi:  10.37188/OPE.20202810.2180
[4] She C Y, Latifi H, Yu J R, et al. Two-frequency Lidar technique for mesospheric Na temperature measurements [J]. Geophysical Research Letters, 1990, 17: 929-932. doi:  10.1029/GL017i007p00929
[5] Bills R E. Iron and Sodium Doppler/temperature lidar studies of the upper mesosphere[D]. Urbana: University of Illinois at Urbana-Champaign, 1991.
[6] She C Y, Yu J R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region [J]. Geophysical Research Letters, 1994, 21: 1771-1774. doi:  10.1029/94GL01417
[7] White M A. A frequency-agile Na lidar for the measurement of temperature and velocity in the mesopauseregion[D]. Fort Collins: Colorado State University, 1999.
[8] She C Y, Sherman J, Yuan T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind [J]. Geophysical Research Letters, 2003, 30: 1319-1323.
[9] Acott P E. Mesosphere momentum flux studies over Fort Collins CO(41N, 105W)[D]. Fort Collins: Colorado State University, 2009.
[10] Hu X, Yan Z A, Guo S Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region [J]. Chinese Science Bulletin, 2011, 56: 417-423. doi:  10.1007/s11434-010-4306-x
[11] Ba J, Hu X, Yan Z A, et al. Observation analysis on the characteristics of vertical dynamical transport of sodium atoms in the mesopause region over the Langfang area [J]. Chinese Journal of Geophysics, 2018, 61(2): 449-457. (in Chinese) doi:  10.6038/cjg2018L0014
[12] Li T, Fang X, Liu W, et al. A narrowband sodium lidar for the measurements of mesopause region temperature and wind [J]. Applied Optics, 2012, 51(22): 5401-5411. doi:  10.1364/AO.51.005401
[13] Lu D R, Pan W L, Wang Y N. Atmospheric profiling synthetic observation system in Tibet [J]. Advances in Atmospheric Sciences, 2018, 35(3): 264-267. doi:  10.1007/s00376-017-7251-7
[14] Tepley C A. The Doppler Rayleigh lidar system at arecibo [J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 30(1): 36-47.
[15] Friedman J S, Tepley C A, Castlebery P A, et al. Middle-atmospheric Doppler lidar using an iodine-vapor edge filter [J]. Optics Letters, 1997, 22(21): 1648-1650. doi:  10.1364/OL.22.001648
[16] Souprayen C, Garnier A, Hertzog A, et al. Reyleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results [J]. Applied Optics, 1999, 38(12): 2410-2421. doi:  10.1364/AO.38.002410
[17] Baumgarten G. Doppler Rayleigh/Mie/Raman Lidar for wind and temperature measurements in the middle atmosphere up to 80 km [J]. Atmospheric Measurement Techniques, 2010, 3: 1509-1518. doi:  10.5194/amt-3-1509-2010
[18] Baumgarten G, Fiedler J, Hildebrand J, et al. Inertia gravity wave in the stratosphere and mesosphere observed by Doppler Wind and temperature lidar [J]. Geophysical Research Letters, 2015, 42: 10929-10936. doi:  10.1002/2015GL066991
[19] Dou X, Han Y, Sun D, et al. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere [J]. Optics Express, 2014, 22(S5): A1203-A1221. doi:  10.1364/OE.22.0A1203
[20] Zhao R C, Dou X K, Sun D S, et al. Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar [J]. Optics Express, 2016, 24(6): A581-A591. doi:  10.1364/OE.24.00A581
[21] Han F, Liu H J, Sun D S, et al. Design and analysis of ultra-narrow filter of Rayleigh lidar [J]. Infrared and Laser Engineering, 2020, 49(2): 0205003. (in Chinese) doi:  10.3788/IRLA202049.0205003
[22] Wang Y Z, Han Y L, Sun D S, et al. Multi-season observation and analysis of quasi-zero wind layer based on Doppler lidar in middle latitudes of China [J]. Infrared and Laser Engineering, 2020, 49(3): 0305004. (in Chinese) doi:  10.3788/IRLA202049.0305004
[23] Yan Z A, Hu X, Guo W J et al. Development of a mobile Doppler lidar system for wind and temperature measurements at 30-70 km [J]. Jouranal of Quantitative Spectroscopy & Radiative Transfer, 2017, 188: 52-59.
[24] She C Y, Yue J, Yan Z A, et al. Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A comparison between iodine vapor filter and Fabry-Perot interferometer methods [J]. Appled Optics, 2007, 46(20): 4434-4443. doi:  10.1364/AO.46.004434
[25] Gardner C S. Performance capabilities of middle-atmosphere temperature lidars: comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems [J]. Applied Optics, 2004, 43(25): 4941-4956. doi:  10.1364/AO.43.004941
[26] Yan Z A, Hu X, Guo S Y. Sodium atoms D2 line Doppler-free saturation fluorescence spectra measurements [J]. Acta Optica Sinica, 2010, 30(4): 1036-1040. (in Chinese)
[27] Ba J, Yan Z A, Hu X, et al. Characteristics of vertical wind perturbations in the mesopauseregion based on lidar measurements and dynamic simulations [J]. Chinese Journal of Space Science, 2017, 37(5): 554-563. (in Chinese) doi:  10.11728/cjss2017.05.554
[28] Ba J, Hu X, Yan Z A et al. Lidar observations of atmospheric gravity wave dissipation included Na atoms transportations in the mesopause region at Langfang, China [J]. Chinese Journal of Geophysics, 2017, 60(2): 499-506. (in Chinese) doi:  10.6038/cjg20170205
[29] Guo W J, Yan Z A, Hu X, et al. Measuring the three-dimensional structure of gravity waves by Lidar [J]. Chinese Journal of Geophysics, 2020, 63(2): 394-400. (in Chinese) doi:  10.6038/cjg2020M0546
[30] Tong H X, Tong C Z, Wang Z Y, et al. Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers [J]. Infrared and Laser Engineering, 2020, 49(12): 20201077. (in Chinese)
[31] Liu Q, Liu C, Zhu X L, et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar [J]. Chinese Optics, 2020, 13(1): 148-155. (in Chinese) doi:  10.3788/co.20201301.0148
[32] He W W, Wu K J, Fu D, et al. Instrument design and forward modeling of near-space wind and temperature sensing interferometer [J]. Optics and Precision Engineering, 2020, 28(8): 1678-1689. (in Chinese)
[33] Tong Y C, Tong X D, Zhang K, et al. Polarizationlidar gain ratio calibration method: a comparison[J]. Chinese Optics, In press.(in Chinese) doi:  10.37188/CO.2020-0136.