[1] Mohammed G H, Colombo R, Middleton E M, et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress [J]. Remote Sens Environ, 2019, 231: 111177. doi:  10.1016/j.rse.2019.04.030
[2] Pérez-Priego O, Zarco-Tejada P J, Miller J R, et al. Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the O2 -A band [J]. IEEE Trans Geosci & Remote Sens, 2005, 43(12): 2860-2869. doi:  https://doi.org/10.1109/TGRS.2005.857906
[3] Flexas J, Briantais J M, Cerovic Z G, et al. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: A new remote sensing system [J]. Remote Sens Environ, 2000, 73: 283-297. doi:  10.1016/S0034-4257(00)00104-8
[4] Odorico P D, Alberti E, Schaepman M E. In-flight spectral performance monitoring of the airborne prism experiment [J]. Appl Opt, 2010, 49(16): 3082-3091. doi:  10.1364/AO.49.003082
[5] Christian F, Philipp K, Troy S M, et al. The chlorophyll fluorescence imaging spectrometer (CFIS), mapping far red fluorescence from aircraft [J]. Remote Sens Environ, 2018, 217: 523-536. doi:  10.1016/j.rse.2018.08.032
[6] Rascher U, Alonso L, Burkart A, et al. Sun-induced fluorescence-a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant [J]. Glob Chang Biol, 2015, 21: 4673-4684. doi:  10.1111/gcb.13017
[7] Rossini M, Nedbal L, Guanter L, et al. Red and far red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis [J]. Geophys Res Lett, 2015, 42: 1632-1639. doi:  10.1002/2014GL062943
[8] Joiner J, Yoshida Y, Vasilkov A P. First observations of global and seasonal terrestrial chlorophyll fluorescence from space [J]. Biogeosciences, 2011, 8: 637-651. doi:  10.5194/bg-8-637-2011
[9] Liu X J, Liu L Y. Retrieval of chlorophyll fluorescence from GOSAT TANSO-FTS data based on weighted least square fitting [J]. Journal of Remote Sensing, 2013, 17(6): 1518-1532. (in Chinese)
[10] Frankenberg C, O’Dell C, Berry J, et al. et al. Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2 [J]. Remote Sens Environ, 2014, 147: 1-12. doi:  10.1016/j.rse.2014.02.007
[11] Coppo P, Taiti A, Pettinato L, et al. Fluorescence imaging spectrometer (FLORIS) for ESA flex mission [J]. Remote Sens, 2017, 9: 649. doi:  10.3390/rs9070649
[12] Drusch M, Moreno J, DelBello U, et al. The fluorescence explorer mission concept—ESA’s earth explorer 8 [J]. IEEE Trans Geosci & Remote Sens, 2017, 55: 1273-1284. doi:  https://doi.org/10.1109/TGRS.2016.2621820
[13] Du S, Liu L, Liu X, et al. The solar-induced chlorophyll fluorescence imaging spectrometer (SIFIS) onboard the first terrestrial ecosystem carbon inventory satellite (TECIS-1): specifications and prospects [J]. Sensors, 2020, 20: 815. doi:  10.3390/s20030815
[14] Du S, Liu L, Liu X, et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite [J]. Science Bulletin, 2018, 63(22): 1502-1512. doi:  10.1016/j.scib.2018.10.003
[15] Joiner J, Guanter L, Lindstrot R, et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2 [J]. Atmos Meas Tech, 2013, 6: 2803-2823. doi:  10.5194/amt-6-2803-2013
[16] Liu X, Liu L. Influence of the canopy BRDF characteristics and illumination conditions on the retrieval of solar-induced chlorophyll fluorescence [J]. Int J Remote Sens, 2018, 39: 1782-1799. doi:  10.1080/01431161.2017.1404165
[17] Zhang Lifu, Wang Siheng, Huang Changping. Top-of-atmosphere hyperspectral remote sensing of solar-induced chlorophyll fluorescence: A review of methods [J]. Journal of Remote Sensing, 2018, 22(1): 1-12. (in Chinese)
[18] Aasen H, Wittenberghe S V, Medina N S, et al. Sun-induced chlorophyll fluorescence II: Review of passive measurement setups, protocols, and their application at the leaf to canopy level [J]. Remote Sens, 2019, 11: 927. doi:  10.3390/rs11080927
[19] Taiti A, Coppo P, Battistelli E. Fluorescence imaging spectrometer optical design[C]//Proceedings of the SPIE, 2015, 9626: 7–10.
[20] Tang H, Wang H W, Cao J Zh, et al. A CMOS high-speed imaging system design based on FPGA[C]//Proceedings of the SPIE, 2015, 9675: 101-105.