[1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Phys Rev A, 1992, 45(11): 8185-8189. doi:  10.1103/PhysRevA.45.8185
[2] Miles John Padgett, Richard William Bowman. Tweezers with a twist [J]. Nature Photon, 2011, 5(6): 343-348. doi:  10.1038/nphoton.2011.81
[3] He H, Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity [J]. Physical Review Letters, 1995, 75(5): 826-829. doi:  10.1103/PhysRevLett.75.826
[4] Dholakia K, Čižmár T. Shaping the future of manipulation [J]. Nature Photon, 2011, 5: 335-342. doi:  10.1038/nphoton.2011.80
[5] Paterson L, MacDonald M P, Arlt J, et al. Controlled rotation of optically trapped microscopic particles [J]. Science, 2001, 292(5518): 912-914. doi:  10.1126/science.1058591
[6] Jeffries G D M, Edgar J S, Zhao Y, et al. Using polarization-shaped optical vortex traps for single-cell nanosurgery [J]. Nano Letters, 2007, 7(2): 415-420. doi:  10.1021/nl0626784
[7] Guo C S, Han Y J, Xu J B, et al. Radial Hilbert transform with Laguerre-Gaussian spatial filters [J]. Optics Letters, 2006, 31(10): 1394-1396. doi:  10.1364/OL.31.001394
[8] Jesacher A, Fürhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy [J]. Physical Review Letters, 2005, 94(23): 233902. doi:  10.1103/PhysRevLett.94.233902
[9] Willig K I, Keller J, Bossi M, et al. STED microscopy resolves nanoparticle assemblies [J]. New J Phys, 2006, 8: 106. doi:  10.1088/1367-2630/8/6/106
[10] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light's orbital angular momentum [J]. Science, 2013, 341(6145): 537-540. doi:  10.1126/science.1239936
[11] Nivas J J J , He Shutong, Rubano A, et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate [J]. Scientific Reports, 2015, 5-17929.
[12] Hnatovsky C, Shvedov V G, Krolikowski W, et al. Materials processing with a tightly focused femtosecond laser vortex pulse [J]. Optics Letters, 2010, 35(20): 3417-3419. doi:  10.1364/OL.35.003417
[13] Anoop K K, Rubano A, Fittipaldi R, et al. Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate [J]. Applied Physics Letters, 2014, 104(24)-e149.
[14] Vinçotte A, Bergé L. Femtosecond optical vortices in air [J]. Physical Review Letters, 2005, 95: 193901. doi:  10.1103/PhysRevLett.95.193901
[15] Polynkin P, Ament C, Moloney J V. Self-focusing of ultraintense femtosecond optical vortices in air [J]. Physical Review Letters, 2013, 111(2): 23901. doi:  10.1103/PhysRevLett.111.023901
[16] Zhang Xiaomei, Shen Baifei, Zhang Lingang, et al. Proton acceleration in underdense plasma by ultraintense Laguerre-Gaussian laser pulse [J]. New J Phys, 2014, 16: 123051. doi:  10.1088/1367-2630/16/12/123051
[17] Chaitanya A N, Aadhi A, Jabir M V, et al. Frequency-doubling characteristics of high-power, ultrafast vortex beams [J]. Optics Letters, 2015, 40(11): 2614-2617. doi:  10.1364/OL.40.002614
[18] Mariyenko I, Strohaber J, Uiterwaal C. Creation of optical vortices in femtosecond pulses [J]. Optics Express, 2005, 13(19): 7599-7608. doi:  10.1364/OPEX.13.007599
[19] Schwarz A, Rudolph W. Dispersion-compensating beam shaper for femtosecond optical vortex beams [J]. Optics Letters, 2008, 33(24): 2970-2972. doi:  10.1364/OL.33.002970
[20] Bezuhanov K, Dreischuh A, Paulus G G, et al. Vortices in femtosecond laser fields [J]. Optics Letters, 2004, 29(16): 1942-1944. doi:  10.1364/OL.29.001942
[21] Tokizane Y, Oka K, Morita R. Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion [J]. Optics Express, 2009, 17: 14517-14525. doi:  10.1364/OE.17.014517
[22] Yamane K, Toda Y, Morita R. Ultrashort optical-vortex pulse generation in few-cycle regime [J]. Optics Express, 2012, 20(17): 18986-18993. doi:  10.1364/OE.20.018986
[23] Shvedov V G, Hnatovsky C, Krolikowski W, et al. Efficient beam converter for the generation of high-power femtosecond vortices [J]. Optics Letters, 2010, 35(15): 2660-2662. doi:  10.1364/OL.35.002660
[24] Bock M, Brunne J, Treffer A, et al. Sub-3-cycle vortex pulses of tunable topological charge [J]. Optics Letters, 2013, 38(18): 3642-3645. doi:  10.1364/OL.38.003642
[25] Qiao Z, Kong L, Xie G, et al. Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser [J]. Optics Letters, 2017, 42: 2547-2550. doi:  10.1364/OL.42.002547
[26] Naik D N, Saad N A, Rao D N, et al. Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach [J]. Scientific Reports, 2017, 7: 1-10.
[27] Ma L, Zhang P, Li Z, et al. Spatiotemporal evolutions of ultrashort vortex pulses generated by spiral multi-pinhole plate [J]. Optics Express, 2017, 25(24): 29864-29873. doi:  10.1364/OE.25.029864
[28] Lei Lin, Peng Wang, Jun Liu. Intense broadband optical-vortex pulses generation using a hollow core fiber[C]//Proceedings of the SPIE. 2018, 10811: 108111B.
[29] Ishaaya A, Davidson N, Friesema A. Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser [J]. Optics Express, 2005, 13(13): 4952-4962. doi:  10.1364/OPEX.13.004952
[30] Smith A V, Armstrong J. Generation of vortex beams by an image-rotating optical parametric oscillator [J]. Opt Express, 2003, 11(8): 868-873. doi:  10.1364/OE.11.000868
[31] Okida M, Omatsu T, Itoh M, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-mum bounce laser [J]. Optics Express, 2007, 15: 7616-7622. doi:  10.1364/OE.15.007616
[32] Chard S P, Shardlow C, Damzen M J. High-power non-astigmatic TEM 00 and vortex mode generation in a compact bounce laser design [J]. Appl Phys B, 2009, 97: 275-280. doi:  10.1007/s00340-009-3642-5
[33] Chen Y F, Lan Y P, Wang S C. Generation of Laguerre-Gaussian modes in fiber-coupled laser diode end-pumped lasers [J]. Appl Phys B, 2001, 72: 167-170.
[34] Kim D J, Kim J W. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser [J]. Opt Lett, 2015, 40: 399-402. doi:  10.1364/OL.40.000399
[35] Senatsky Y, Bisson J F, Li Jianlang, et al. Laguerre-Gaussian modes selection in diode-pumped solid-state lasers [J]. Opt Rev, 2012, 19: 201-221. doi:  10.1007/s10043-012-0032-8
[36] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror [J]. J Opt Soc Am A, 2010, 27(9): 2072-2077. doi:  10.1364/JOSAA.27.002072
[37] Kano K, Kozawa Y, Sato S. Generation of a purely single transverse mode vortex beam from a He-Ne laser cavity with a spot-defect mirror [J]. International Journal of Optics, 2011, 2012(1687-9384): 359141.
[38] Wang S, Zhang S, Yang H, et al. Direct emission of chirality controllable femtosecond LG01 vortex beam [J]. Applied Physics Letters, 2018, 112(20): 201110. doi:  10.1063/1.5028477
[39] Herrmann J. Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain [J]. J Opt Soc Am B, 1994, 11(3): 498-512.
[40] Xie G Q, Tang D Y, Zhao L M, et al. High-power self-mode-locked Yb:Y2O3 ceramic laser [J]. Optics Letters, 2007, 32(18): 2741-2743. doi:  10.1364/OL.32.002741
[41] Zhang Y, Yu H, Zhang H, et al. Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling [J]. Optics Express, 2016, 24(5): 5514-5522. doi:  10.1364/OE.24.005514
[42] Hasnaoui A, Ait-Ameur K. Kerr lens effect induced by a vortex LG0m laser beam [J]. Optik, 2020, 207: 164452. doi:  10.1016/j.ijleo.2020.164452
[43] Chang M T, Liang H C, Su K W, et al. Exploring transverse pattern formation in a dual-polarization self-mode-locked monolithic Yb:KGW laser and generating a 25 GHz sub-picosecond vortex beam via gain competition [J]. Optics Express, 2016, 24(8): 8754-8762. doi:  10.1364/OE.24.008754
[44] Zhang Shulin, Li Ping, Wang Sha, et al. Direct excitation of chirality controllable LG01 vortex beam in solid-state lasers by intracavity astigmatism manipulation [J]. Laser Phys Lett, 2019, 16: 35002. doi:  10.1088/1612-202X/aaf7fe
[45] Wang S, Zhao Z, Ito I, et al. Direct generation of femtosecond vortex beam from a Yb: KYW oscillator featuring a defect-spot mirror [J]. OSA Continuum, 2019, 2(3): 523-530.
[46] Li Nan, Huang Junjie, Xu Bin, et al. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr:LiYF4 visible laser [J]. Photon Res, 2019, 7(11): 1209-1213. doi:  10.1364/PRJ.7.001209
[47] Zhang Hongwei, Liu Yange, Wang Zhi, et al. Generation of arbitrary polarized OAM mode based on a fiber mode selective coupler [J]. J Opt, 2019, 21: 85705. doi:  10.1088/2040-8986/ab2c4a
[48] Sun Biao, Wang Anting, Xu Lixin, et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating [J]. Opt Lett, 2012, 37: 464-466. doi:  10.1364/OL.37.000464
[49] Wu H, Gao S, Huang B, et al. All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber [J]. Optics Letters, 2017, 42: 5210-5213. doi:  10.1364/OL.42.005210
[50] Zhang W, Huang L, Wei K, et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion [J]. Optics Letters, 2016, 41(21): 5082-5085. doi:  10.1364/OL.41.005082
[51] Li S, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter [J]. Optics Letters, 2015, 40(18): 4376-4379. doi:  10.1364/OL.40.004376
[52] Wong G K L, Kang M S, Lee H W, et al. Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber [J]. Science, 2012, 337(6093): 446-449. doi:  10.1126/science.1223824
[53] Tang Min, Li Haisu, Huang Lin, et al. Erbium-ring-doped fiber laser for transverse vector modes output [J]. Optics & Laser Technology, 2019, 115: 233-238.
[54] Wang T, Wang F, Shi F, et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler [J]. Journal of Lightwave Technology, 2017, 35(11): 2161-2166. doi:  10.1109/JLT.2017.2676241
[55] Zhang Zhiming, Wei Wei, Sun Guoqing, et al. All-fiber short-pulse vortex laser with adjustable pulse width [J]. Laser Phys, 2020, 30: 55102. doi:  10.1088/1555-6611/ab8641
[56] Zhang Zhiming, Wei Wei, Li Zhili, et al. All-fiber vortex laser based on a nonlinear amplifying loop mirror and a coupler [J]. IEEE Photonics Technology Letters, 2019, 31: 1049.
[57] Mao Dong, Li Mingkun, He Zhiwen, et al. Optical vortex fiber laser based on modulation of transverse modes in two mode fiber [J]. APL Photonics, 2019, 4: 60801. doi:  10.1063/1.5094599
[58] Zhang Wending, Wei Keyan, Mao Dong, et al. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating [J]. Optics Letters, 2017, 42(3): 454-457. doi:  10.1364/OL.42.000454
[59] Zhang Zhiming, Wei Wei, Tang Liqin, et al. Generation of all-fiber femtosecond vortex laser based on NPR mode-locking and mechanical LPG [J]. Chinese Optics Letters, 2018, 16(11): 110501. doi:  10.3788/COL201816.110501
[60] Lu Jiafeng, Shi Fan, Meng Linghao, et al. Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser [J]. Photonics Research, 2020, 8(7): 1203-1212. doi:  10.1364/PRJ.386954