[1] Wang Y, Li C Q, Zhang H Z, et al. Research on unconventional laser machining [J]. Infrared and Laser Engineering, 2011, 40(3): 448-454. (in Chinese)
[2] Wang Z, Fu W J, Zhang R Z. Numerical simulation of femtosecond laser multi-pulse ablation of metal iron [J]. Infrared and Laser Engineering, 2019, 48(7): 0706002. (in Chinese) doi:  10.3788/IRLA201948.0706002
[3] Guo M, Zhang Y X, Zhang W Y, et al. Thermal damage of monocrystalline silicon irradiated by long pulse laser [J]. Infrared and Laser Engineering, 2020, 49(3): 0305002. doi:  10.3788/IRLA202049.0305002
[4] Yang W, Peng X H, Zhang J. Study of laser cutting technology for silicon wafer under water [J]. Chinese Journal of Lasers, 2009, 36(11): 3064-3067. (in Chinese) doi:  10.3788/CJL20093611.3064
[5] Huang H K, Lai J C, Lu J, et al. Study on Nd: YAG ns pulsed laser ablation of Ge target in water [J]. Infrared and Laser Engineering, 2020, 49(8): 20190498. (in Chinese) doi:  10.3788/IRLA20190498
[6] Zhong X, Eshraghi J, Vlachos P, et al. A model for a laser-induced cavitation bubble [J]. International Journal of Multiphase Flow, 2020, 132: 103433. doi:  10.1016/j.ijmultiphaseflow.2020.103433
[7] Avila S G, Ohl C D. Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles [J]. Journal of Fluid Mechanics, 2016, 805: 551-576. doi:  10.1017/jfm.2016.583
[8] Ren X D, He H, Tong Y Q, et al. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles [J]. Ultrasonics Sonochemistry, 2016, 32: 218-223. doi:  10.1016/j.ultsonch.2016.03.012
[9] Charee W, Tangwarodomnukun V, Dumkum C. Ultrasonic-assisted underwater laser micromachining of silicon [J]. Journal of Materials Processing Technology, 2016, 231: 209-220. doi:  10.1016/j.jmatprotec.2015.12.031
[10] Bao J, Long Y, Tong Y, et al. Experiment and simulation study of laser dicing silicon with water-jet [J]. Applied Surface Science, 2016, 387: 491-496. doi:  10.1016/j.apsusc.2016.06.135
[11] Kanitz A, Kalus M R, Gurevich E L, et al. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles [J]. Plasma Sources Science and Technology, 2019, 28(10): 103001. doi:  10.1088/1361-6595/ab3dbe
[12] De B A, Sansone M, D'Alessio L, et al. Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid [J]. Journal of Physics D:Applied Physics, 2013, 46(44): 445301. doi:  10.1088/0022-3727/46/44/445301
[13] Wagener P, Ibrahimkutty S, Menzel A, et al. Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid [J]. Physical Chemistry Chemical Physics Pccp, 2013, 15: 3068-3074. doi:  10.1039/C2CP42592K
[14] Giacomo A D, Dell'Aglio M, Santagata A, et al. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production [J]. Physical Chemistry Chemical Physics Pccp, 2013, 15: 3083-3092. doi:  10.1039/C2CP42649H
[15] Fan L T, Yuan X G, Zhou C X, et al. Contact Angle of Ethanol and n‐Propanol Aqueous Solutions on Metal Surfaces [J]. Chemical Engineering & Technology, 2011, 34(9): 1535-1542.
[16] Barcikowski S, Zhang D S, Gökce B, et al. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol [J]. Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2016, 367: 222-230.
[17] Ma Z G, Wang J A, Yu Y, et al. Light extinction properties of underwater bubble films [J]. Laser Technology, 2009, 33(1): 18-20. (in Chinese)