[1] Malik M, Magaña-Loaiza O S, Boyd R W. Quantum-secured imaging [J]. Appl Phys Lett, 2012, 101(24): 241103. doi:  10.1063/1.4770298
[2] Giovannetti V, Lloyd S, Maccone L. Quantum cryptographic ranging [J]. Journal of Optics B, 2002, 4(4): S413. doi:  10.1088/1464-4266/4/4/330
[3] Malik M, Magana O, Boyd R W. Secure quantum LIDAR[C]//Frontiers in Optics Optical Society of America, 2012: FM3 C. 3.
[4] Wang X, Zhu B. A quantum target detection using polarized photons[C]//Photonics Asia, International Society for Optics and Photonics, 2012, 855405: 1-9.
[5] Shi D S. Research on optical quantum radar technology based on wavelength, time and quantum random pulse sequence [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences) , 2020. (in Chinese)
[6] Klyshko D N, Sviridov Y. Photons and Nonlinear Optics[M]. London: Routledge, 2018.
[7] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429. doi:  10.1103/PhysRevA.52.R3429
[8] Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source [J]. Physical Review Letters, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[9] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802. doi:  10.1103/PhysRevA.78.061802
[10] Hardy N D, Shapiro J H. Ghost imaging in reflection: Resolution, contrast, and signal-to-noise ratio[C]//International Society for Optics and Photonics, 2010, 7815: 78150 L.
[11] Katkovnik V, Astola J. Computational ghost imaging: Advanced compressive sensing (CS) technique[C]//International Society for Optics and Photonics, 2012, 8413: 84130 N.
[12] Phillips D B, He R, Chen Q, et al. Non-diffractive computational ghost imaging [J]. Optics Express, 2016, 24(13): 14172-14182. doi:  10.1364/OE.24.014172
[13] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction [J]. Physical Review Letters, 2004, 92(9): 093903. doi:  10.1103/PhysRevLett.92.093903
[14] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light [J]. Optics Letters, 2005, 30(18): 2354-2356. doi:  10.1364/OL.30.002354
[15] Cheng J. Ghost imaging through turbulent atmosphere [J]. Optics Express, 2009, 17(10): 7916-7921. doi:  10.1364/OE.17.007916
[16] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight [J]. Optics Letters, 2014, 39(8): 2314-2317. doi:  10.1364/OL.39.002314
[17] Cai Y J. Research progress of correlation imaging and its Application [J]. Journal of Sichuan Normal University, 2018, 41(6): 711-728. (in Chinese)
[18] Wu Z W, Qiu X D, Chen L X. Research status and prospect of correlation imaging technology [J]. Laser and Optoelectronics Progress, 2020, 57(665): 9-25. (in Chinese)
[19] Zhao S M, Zhao L, Guo H, et al. Research on principle and Progress of ghost imaging [J]. Journal of Nanjing University of Posts and Telecommunications, 2021, 41(192): 65-77. (in Chinese)
[20] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination [J]. Science, 2008, 321(5895): 1463-1465. doi:  10.1126/science.1160627
[21] Tan S H, Erkmen B I, Giovannetti V, et al. Quantum illumination with Gaussian states [J]. Physical Review Letters, 2008, 101(25): 253601. doi:  10.1103/PhysRevLett.101.253601
[22] Lopaeva E D, Berchera I R, Degiovanni I P, et al. Experimental realization of quantum illumination [J]. Physical Review Letters, 2013, 110(15): 153603. doi:  10.1103/PhysRevLett.110.153603
[23] Xu S L, Hu Y H, Zhao N X, et al. Quantum illumination target detection based on M&M' state [J]. Acta Photonica Sinica, 2016, 45(6): 0627001. (in Chinese)
[24] Sanz M, Las Heras U, García-Ripoll J J, et al. Quantum estimation methods for quantum illumination [J]. Physical Review Letters, 2017, 118(7): 070803. doi:  10.1103/PhysRevLett.118.070803
[25] Gregory T, Moreau P A, Toninelli E, et al. Imaging through noise with quantum illumination [J]. Science Advances, 2020, 6(6): 2652. doi:  10.1126/sciadv.aay2652
[26] Tao Z W, Ren Y C, Ai Z Z, et al. Quantum illumination radar based on entangled coherent States [J]. Acta Physica Sinica, 2021, 70(17): 63-70. (in Chinese)
[27] Pezzé L, Smerzi A. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light [J]. Physical Review Letters, 2008, 100(7): 073601. doi:  10.1103/PhysRevLett.100.073601
[28] Giovannetti V, Lloyd S, Maccone L. Quantum metrology [J]. Physical Review Letters, 2006, 96(1): 010401. doi:  10.1103/PhysRevLett.96.010401
[29] Anisimov P M, Raterman G M, Chiruvelli A, et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit [J]. Physical Review Letters, 2010, 104(10): 103602. doi:  10.1103/PhysRevLett.104.103602
[30] Zhang J D, Zhang Z J, Zhao Y, et al. Ultra-sensitive interferometric quantum lidar with Compressed Vacuum Injection [J]. Infrared and Laser Engineering, 2017, 46(7): 0730002. (in Chinese) doi:  10.3788/IRLA201746.0730002
[31] Schäfermeier C, Ježek M, Madsen L S, et al. Deterministic phase measurements exhibiting super-sensitivity and super-resolution [J]. Optica, 2018, 5(1): 60-64. doi:  10.1364/OPTICA.5.000060
[32] Wang S, Wang Y, Zhai L, et al. Two-mode quantum inter-ferometry with a single-mode Fock state and parity detection [J]. Journal of the Optical Society of America B, 2018, 35(5): 1046-1053. doi:  10.1364/JOSAB.35.001046
[33] Gao L, Zhang X L, Ma J T, et al. Quantum enhanced Doppler lidar based on integrated quantum compression light source [J]. Infrared and Laser Engineering, 2021, 50(3): 20210031. (in Chinese) doi:  10.3788/IRLA20210031
[34] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification [J]. Journal of the Optical Society of America B, 2010, 27(6): A63-A72. doi:  10.1364/JOSAB.27.000A63
[35] Wasilousky P A, Smith K H, Glasser R, et al. Quantum enhancement of a coherent ladar receiver using phase-sensitive amplification[C]//SPIE, 2011, 8163: 816305.
[36] Dailey J M, Agarwal A, Toliver P, et al. Enhanced photon-pair detection using phase-sensitive pre amplification[C]//Conference on Lasers and Electro-Optics IEEE, 2015: 1-2.
[37] Shahverdi A, Sua Y M, Tumeh L, et al. Quantum parametric mode sorting: Beating the time-frequency filtering [J]. Scientific Reports, 2017, 7(1): 1-12. doi:  10.1038/s41598-016-0028-x
[38] Rehain P, Sua Y M, Zhu S, et al. Noise-tolerant single photon sensitive three-dimensional imager [J]. Nature Communications, 2020, 11(1): 1-7. doi:  10.1038/s41467-019-13993-7
[39] Sua Y M, Zhu S, Rehain P, et al. Quantum 3 D imaging through multiscattering media of 10 optical depth[C]//Ocean Sensing and Monitoring XII. International Society for Optics and Photonics, 2020, 11420: 1142009.