[1] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials [J]. Light: Science & Applications, 2014, 3(10): e218.
[2] Gao L, Cheng Q, Yang J, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces [J]. Light: Science & Applications, 2015, 4(9): e324.
[3] Liang L, Qi M, Yang J, et al. Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials [J]. Advanced Optical Materials, 2015, 3(10): 1374-1380. doi:  10.1002/adom.201500206
[4] Liu S, Cui T J, Xu Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves [J]. Light: Science & Applications, 2016, 5(5): e16076.
[5] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780-1782. doi:  10.1126/science.1125907
[6] Leonhardt U. Optical conformal mapping [J]. Science, 2006, 312(5781): 1777-1780. doi:  10.1126/science.1126493
[7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980. doi:  10.1126/science.1133628
[8] Li J, Pendry J B. Hiding under the carpet: A new strategy for cloaking [J]. Physical Review Letters, 2008, 101(20): 203901. doi:  10.1103/PhysRevLett.101.203901
[9] Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics [J]. Nature Materials, 2009, 8(7): 568-571. doi:  10.1038/nmat2461
[10] Lai Y, Chen H, Zhang Z, et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell [J]. Physical Review Letters, 2009, 102: 93901.
[11] Lai Y, Ng J, Chen H, et al. Illusion optics: The optical transformation of an object into another object [J]. Physical Review Letters, 2009, 102(25): 253902. doi:  10.1103/PhysRevLett.102.253902
[12] Chen H, Zheng B, Shen L, et al. Ray-optics cloaking devices for large objects in incoherent natural light [J]. Nature Communications, 2013, 4: 2652. doi:  10.1038/ncomms3652
[13] Zheng B, Zhu R, Jing L, et al. 3D visible-light invisibility cloak [J]. Advanced Science, 2018, 5(6): 1800056. doi:  10.1002/advs.201800056
[14] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[15] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352(6290): 1190-1194. doi:  10.1126/science.aaf6644
[16] Wang S, Wu P C, Su V, et al. A broadband achromatic metalens in the visible [J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi:  10.1038/s41565-017-0052-4
[17] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi:  10.1038/s41565-017-0034-6
[18] Lin R J, Su V C, Wang S, et al. Achromatic metalens array for full-colour light-field imaging [J]. Nat Nanotechnol, 2019, 14(3): 227-231. doi:  10.1038/s41565-018-0347-0
[19] Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves [J]. Nature Materials, 2012, 11(5): 426-431. doi:  10.1038/nmat3292
[20] Sun W, He Q, Sun S, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations [J]. Light: Science & Applications, 2016, 5(1): e16003.
[21] Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface [J]. Nature Communications, 2013, 4: 2808. doi:  10.1038/ncomms3808
[22] Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light [J]. Nature Communications, 2013, 4: 2807.
[23] Huang L, Muhlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces [J]. Adv Mater, 2015, 27(41): 6444-6449. doi:  10.1002/adma.201502541
[24] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi:  10.1038/nnano.2015.2
[25] Deng Z, Deng J, Zhuang X, et al. Diatomic metasurface for vectorial holography [J]. Nano Letters, 2018, 18(5): 2885-2892. doi:  10.1021/acs.nanolett.8b00047
[26] Huang L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces [J]. Acs Photonics, 2017, 4(2): 338-346. doi:  10.1021/acsphotonics.6b00808
[27] Liu B, Chu H, Giddens H, et al. Rotational Doppler effect of spinning metasurface in radar system[C]//IEEE, 2019.
[28] Yin X, Ye Z, Rho J, et al. Photonic spin hall effect at metasurfaces [J]. Science, 2013, 339(6126): 1405-1407. doi:  10.1126/science.1231758
[29] Shitrit N, Yulevich I, Maguid E, et al. Spin-optical metamaterial route to spin-controlled photonics [J]. Science, 2013, 340(6133): 724-726. doi:  10.1126/science.1234892
[30] Luo W, Xiao S, He Q, et al. Photonic spin hall effect with nearly 100% efficiency [J]. Advanced Optical Materials, 2015, 3(8): 1102-1108. doi:  10.1002/adom.201500068
[31] Ling X, Zhou X, Yi X, et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence [J]. Light: Science & Applications, 2015, 4(5): e290.
[32] Li L, Liu Z, Ren X, et al. Metalens-array–based high-dimensional and multiphoton quantum source [J]. Science (American Association for the Advancement of Science), 2020, 368(6498): 1487-1490. doi:  10.1126/science.aba9779
[33] Li L, Jun Cui T, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms [J]. Nature Communications, 2017, 8: 197. doi:  10.1038/s41467-017-00164-9
[34] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles [J]. Physical Review X, 2017, 7: 0410564.
[35] Zhang X G, Jiang W X, Cui T J. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity [J]. Applied Physics Letters, 2018, 113(9): 91601. doi:  10.1063/1.5045718
[36] Zhang J, Mei Z L, Zhang W R, et al. An ultrathin directional carpet cloak based on generalized Snell's law [J]. Applied Physics Letters, 2013, 103(15): 151115. doi:  10.1063/1.4824898
[37] Ni X, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light [J]. Science, 2015, 349(6254): 1310-1314. doi:  10.1126/science.aac9411
[38] Yang Y, Wang H, Yu F, et al. A metasurface carpet cloak for electromagnetic, acoustic and water waves [J]. Scientific Reports, 2016, 6: 20219.
[39] Orazbayev B, Mohammadi Estakhri N, Alù A, et al. Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves [J]. Advanced Optical Materials, 2017, 5(1): 1600606. doi:  10.1002/adom.201600606
[40] Hsu L Y, Lepetit T, Kante B. Extremely thin dielectric metasurface for carpet cloaking [J]. Progress in Electromagnetics Research-Pier, 2015, 152: 33-40. doi:  10.2528/PIER15032005
[41] Yang Y, Jing L, Zheng B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase [J]. Advanced Materials, 2016, 28(32): 6866-6871. doi:  10.1002/adma.201600625
[42] Sounas D L, Fleury R, Alù A. Unidirectional cloaking based on metasurfaces with balanced loss and gain [J]. Physical Review Applied, 2015, 4(1): 14005. doi:  10.1103/PhysRevApplied.4.014005
[43] Li H, Rosendo-López M, Zhu Y, et al. Ultrathin acoustic parity-time symmetric metasurface cloak [J]. Research, 2019, 2019: 1-7.
[44] Chu H, Li Q, Liu B, et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials [J]. Light: Science & Applications, 2018, 7: 50.
[45] Silveirinha M R, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using Epsilon-near-zero materials [J]. Phys Rev Lett, 2006, 97(15): 157403. doi:  10.1103/PhysRevLett.97.157403
[46] Silveirinha M G, Engheta N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using epsilon near-zero metamaterials [J]. Physical Review B, 2007, 76(24): 245109. doi:  10.1103/PhysRevB.76.245109
[47] Liu R, Cheng Q, Hand T, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies [J]. Physical Review Letters, 2008, 100(2): 23903. doi:  10.1103/PhysRevLett.100.023903
[48] Edwards B, Alù A, Young M E, et al. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide [J]. Physical Review Letters, 2008, 100(3): 33903. doi:  10.1103/PhysRevLett.100.033903
[49] Huang X, Lai Y, Hang Z H, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials [J]. Nature Materials, 2011, 10(8): 582-586. doi:  10.1038/nmat3030
[50] Liberal I, Mahmoud A M, Li Y, et al. Photonic doping of epsilon-near-zero media [J]. Science, 2017, 355(6329): 1058-1062. doi:  10.1126/science.aal2672
[51] Qian C, Zheng B, Shen Y, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention [J]. Nature Photonics, 2020, 14(6): 383-390. doi:  10.1038/s41566-020-0604-2
[52] Yang J, Huang C, Wu X, et al. Dual-wavelength carpet cloak using ultrathin metasurface [J]. Advanced Optical Materials, 2018, 6(4): 1800073.
[53] Wang C, Yang Y, Liu Q, et al. Multi-frequency metasurface carpet cloaks [J]. Optics Express, 2018, 26(11): 14123. doi:  10.1364/OE.26.014123
[54] Huang C, Yang J, Wu X, et al. Reconfigurable metasurface cloak for dynamical electromagnetic illusions [J]. Acs Photonics, 2018, 5(5): 1718-1725. doi:  10.1021/acsphotonics.7b01114
[55] Chen P, Argyropoulos C, Alù A. Broadening the cloaking bandwidth with non- foster metasurfaces [J]. Physical Review Letters, 2013, 111(23): 233001. doi:  10.1103/PhysRevLett.111.233001
[56] Chen P, Alù A. Mantle cloaking using thin patterned metasurfaces [J]. Physics Review B, 2011, 84(20): 205110.
[57] Alù A, Engheta N. Cloaking a sensor [J]. Physical Review Letters, 2009, 102(23): 233901. doi:  10.1103/PhysRevLett.102.233901
[58] Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 72(1 Pt 2): 16623.
[59] Monticone F, Valagiannopoulos C A, Alù A. Parity-time symmetric nonlocal metasurfaces: All-angle negative refraction and volumetric imaging [J]. Physical Review X, 2016, 6(4): 41018. doi:  10.1103/PhysRevX.6.041018
[60] Qiu M, Jia M, Ma S, et al. Angular dispersions in terahertz metasurfaces: Physics and applications [J]. Physical Review Applied, 2018, 9: 0540505.
[61] Zhang X, Li Q, Liu F, et al. Controlling angular dispersions in optical metasurfaces [J]. Light: Science & Applications, 2020, 9: 76.