[1] Reibel Y. Infrared SWAP detectors: pushing the limits[C]//SPIE, 2015, 9451: 945110.
[2] 杨健荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

Yang Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Defense Industry Press, 2012. (in Chinese)
[3] Rogalski A. Third-generation infrared photodetector arrays [J]. Journal of Applied Physics, 2009, 105(9): 091101. doi:  10.1063/1.3099572
[4] Ashley T. Non-equilibrium modes of operation for infrared detectors [J]. Infrared Physics, 1986, 26(5): 303-315.
[5] Ashley T. Infrared detection using minority carrier exclusion[C]//SPIE, 1986, 588: 62-68.
[6] Lutz H. Improved high operating temperature MCT MWIR modules[C]//SPIE, 2014, 9070: 90701D.
[7] Eich D. Progress of MCT detector technology at AIM towards smaller pitch and lower dark current [J]. Journal of Electronic Materials, 2017, 46(9): 5445-5457.
[8] Péré-Laperne N. Improvement of long wave p on n HgCdTe infrared technology[C]//SPIE, 2016, 9933: 99330H.
[9] Rubaldo L. Recent advances in sofradir IR on Ⅱ-Ⅵ photodetectors for HOT applications[C]//SPIE, 2016, 9755: 97551X.
[10] Emelie P Y. Modeling and design considerations of HgCdTe infrared photodiodes under nonequilibrium operation [J]. Journal of Electronic Materials, 2007, 36(8): 846-851. doi:  10.1007/s11664-007-0107-7
[11] Gordon N T. HgCdTe detectors operating above 200K [J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144. doi:  10.1007/s11664-006-0233-7
[12] Wijewarnasuriya P S. Nonequilibrium operation of arsenic diffused long-wavelength infrared HgCdTe photodiodes [J]. Journal of Electronic Materials, 2008, 37(9): 1283-1290. doi:  10.1007/s11664-008-0455-y
[13] Kinch M A. High operating temperature MWIR detectors[C]//SPIE, 2010, 7660: 76602V.
[14] Wijewarnasuriya P S. Nonequilibrium operation of long wavelength HgCdTe photo detectors for higher operating temperature[C]//SPIE, 2010, 7780: 77800A.
[15] Velicu S. MWIR and LWIR HgCdTe infrared detectors operated with reduced cooling requirements [J]. Journal of Electronic Materials, 2010, 39(7): 873-881. doi:  10.1007/s11664-010-1218-0
[16] Velicu S. Two color high operating temperature HgCdTe photodetectors grown by molecular beam epitaxy on silicon substrates[C]//SPIE, 2013, 8876: 887608.
[17] Lee D. High-operating temperature HgCdTe: a vision for the near future [J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595. doi:  10.1007/s11664-016-4566-6
[18] Jerrama P. Teledyne’s high performance infrared detectors for space missions[C]//SPIE, 2019, 11180: 111803D.
[19] Itsuno A M. Design and modeling of HgCdTe nBn detectors [J]. Journal of Electronic Materials, 2011, 40(8): 1624-1629. doi:  10.1007/s11664-011-1614-0
[20] Itsuno A M. Mid-wave infrared HgCdTe nBn photodetector [J]. Applied Physics Letters, 2012, 161102(100): 2-4.
[21] Itsuno A M. Design of an Auger-suppressed unipolar HgCdTe NBvN photodetector [J]. Journal of Electronic Materials, 2012, 41(10): 2886-2993. doi:  10.1007/s11664-012-1992-y
[22] Kopytko M. Engineering the bandgap of unipolar of HgCdTe-based nBn infrared photodetectors [J]. Journal of Electronic Materials, 2015, 44(1): 158-166. doi:  10.1007/s11664-014-3511-9
[23] Martyniuk P. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range [J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319. doi:  10.1007/s11664-013-2737-2
[24] Akhavan N D. A method of removing the valence band offset discontinuity in HgCdTe-based nBn detectors [J]. Applied Physics Letters, 2014, 105(12): 1-4.
[25] Akhavan N D. Superlattice barrier HgCdTe nBn infrared photodetectors: validation of the effective mass approximation [J]. IEEE Transactions on Electron Devices, 2016, 63(12): 1-8.
[26] 褚君浩. 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005.

Chu Junhao. Narrow-gap Semiconductor Physics[M]. Beijing: Science Press. 2005.
[27] Tobin S T. 1/f noise in (Hg, Cd)Te photodiodes [J]. IEEE Transactions on Electron Devices, 1980, 27(1): 43-48.
[28] Guinedor P. Low-frequency noises and DLTS studies in HgCdTe MWIR photodiodes [J]. Journal of Electronic Materials, 2019, 42(11): 3309-3319.