[1] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181. doi:  10.1126/science.1957169
[2] Minakaran N, de Carvalho E R, Petzold A, et al. Optical coherence tomography (OCT) in neuro-ophthalmology [J]. Eye, 2021, 35(1): 17-32. doi:  10.1038/s41433-020-01288-x
[3] Liu Z, Saeedi O, Zhang F, et al. Quantification of retinal ganglion cell morphology in human glaucomatous eyes [J]. Investigative Ophthalmology & Visual Science, 2021, 62(3): 34.
[4] Everett M, Magazzeni S, Schmoll T, et al. Optical coherence tomography: From technology to applications in ophthalmology [J]. Translational Biophotonics, 2021, 3(1): e202000012.
[5] Hammer D, Villanueva R, Agrawal A, et al. Distribution of inner limiting membrane microglia in glaucoma measured with adaptive optics-optical coherence tomography [J]. Investigative Ophthalmology & Visual Science, 2020, 61(7): 3498.
[6] Tomlins P H, Ferguson R A, Hart C, et al. Point-spread function phantoms for optical coherence tomography[R]. Middlesex: National Physical Laboratory, 2009.
[7] Agrawal A, Pfefer T J, Gilani N, et al. Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom [J]. Optics Letters, 2010, 35(13): 2269-2271. doi:  10.1364/OL.35.002269
[8] Pfefer J, Fouad A, Chen C W, et al. Multi-system comparison of optical coherence tomography performance with point spread function phantoms [C]//Design and Quality for Biomedical Technologies VI. International Society for Optics and Photonics, 2013, 8573: 85730 C.
[9] Hu Zhixiong, Liu Wenli, Hong Baoyu, et al. A physical model eye with 3D resolution test targets for optical coherence tomography [J]. Opto-Electronic Engineering, 2014, 41(12): 28-32, 38. (in Chinese)
[10] Cao Z, Ding Z, Hu Z, et al. Model eyes with curved multilayer structure for the axial resolution evaluation of an ophthalmic optical coherence tomography device [J]. Journal of Innovative Optical Health Sciences, 2018, 11(3): 1850013. doi:  10.1142/S179354581850013X
[11] Hu Zhixiong, Hao Bingtao, Liu Wenli, et al. Research on point spread function phantom fabrication and application for evaluating resolution performance of OCT systems [J]. Acta Optica Sinica, 2015, 35(4): 0417001. (in Chinese)
[12] Wang H, Liu W, Hu Z, et al. Model eye tool for retinal optical coherence tomography instrument calibration [J]. Journal of Innovative Optical Health Sciences, 2021, 14(3): 2150010. doi:  10.1142/S1793545821500103
[13] International Organization for Standardization. ISO 16971: 2005 Ophthalmic instruments-Optical coherence tomograph for the posterior segment of the human eye [S]. 2015.
[14] Kedia N, Liu Z, Sochol R D, et al. 3-D printed photoreceptor phantoms for evaluating lateral resolution of adaptive optics imaging systems [J]. Optics Letters, 2019, 44(7): 1825-1828. doi:  10.1364/OL.44.001825
[15] Lamont A C, Restaino M A, Alsharhan A T, et al. Direct laser writing of a titanium dioxide-laden retinal cone phantom for adaptive optics-optical coherence tomography [J]. Optical Materials Express, 2020, 10(11): 2757-2767. doi:  10.1364/OME.400450
[16] Horng H, O ’Brien K, Lamont A, et al. 3D printed vascular phantoms for high-resolution biophotonic image quality assessment via direct laser writing [J]. Optics Letters, 2021, 46(8): 1987-1990. doi:  10.1364/OL.412849
[17] Aumann S, Donner S, Fischer J, et al. Optical Coherence Tomography (OCT): Principle and Technical Realization[M]//Bille J. High Resolution Imaging in Microscopy and Ophthalmology. Cham: Springer, 2019: 59-85.
[18] Refractive Index. INFO [EB/OL]. [2021-12-20]. https://refractiveindex.info/?shelf=glass&book=CDGM-K&page=K4A.