[1] 高长青. 机器人外科学[M]. 北京: 人民卫生出版社, 2015: 279-301
[2] Fu Yili, Pan Bo. Research progress of surgical robot for minimally invasive surgery [J]. Journal of Harbin Institute of Technology, 2019, 51(1): 1-15. (in Chinese) doi:  10.11918/j.issn.0367-6234.201806178
[3] J Payne C, Wamala I, Bautista-Salinas D, et al. Soft robotic ventricular assist device with septal bracing for therapy of heart failure [J]. Science Robotics, 2017, 2(12): eaan6736. doi:  10.1126/scirobotics.aan6736
[4] Yan Jihong, Shi Peipei, Zhang Xinbin, et al. Review of biomimetic mechanism, actuation, modeling and control in soft manipulators [J]. Journal of Mechanical Engineering, 2018, 54(15): 1-14. (in Chinese) doi:  10.3901/JME.2018.15.001
[5] De Falco I, Cianchetti M, Menciassi A. A soft multi-module manipulator with variable stiffness for minimally invasive surgery [J]. Bioinspiration & Biomimetics, 2017, 12(5): 056008. doi:  10.1088/1748-3190/aa7ccd
[6] Hu W, Lum G Z, Mastrangeli M, et al. Small-scale soft-bodied robot with multimodal locomotion [J]. Nature, 2018, 554: 81-85. doi:  10.1038/nature25443
[7] Laschi C, Mazzolai B, Cianchetti M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities [J]. Science Robotics, 2016, 1(1): eaah3690. doi:  10.1126/scirobotics.aah3690
[8] Zhang X. Silicon microsurgery-force sensor based on diffractive optical MEMS encoders [J]. Sensor Review, 2004, 24(1): 37-41. doi:  10.1108/02602280410515806
[9] Peirs J, Clijnen J, Reynaerts D, et al. A micro optical force sensor for force feedback during minimally invasive robotic surgery [J]. Sensors and Actuators A: Physical, 2004, 115(2–3): 447-455.
[10] Yokoyama K, Nakagawa H, Shah D C, et al. Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus [J]. Circ: Arrhythm & Electrophysiol, 2008, 1(5): 354-362.
[11] Kesner S B, Howe R D. Force control of flexible catheter robots for beating heart surgery[C]//Proc IEEE Int Conf Robot Autom, 2011: 1589-1594.
[12] He X, Gehlbach P, Handa J, et al. Development of a miniaturized 3-DOF force sensing instrument for robotically assisted retinal microsurgery and preliminary results[C]//5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2014: 252-258.
[13] Bell B, Stankowski S, Moser B, et al. Integrating optical fiber force sensors into microforceps for ORL microsurgery[C]//2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: 1848–1851.
[14] Thuruthel T G, Shih B, Laschi C, et al. Soft robot perception using embedded soft sensors and recurrent neural networks [J]. Science Robotics, 2019, 4(26): eaav1488. doi:  10.1126/scirobotics.aav1488
[15] Rocha R P, Lopes P A, Almeida A T D, et al. Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand [J]. Journal of Micromechanics and Microengineering, 2018, 28(3): 034001.
[16] Lucarotti C, Totaro M, Sadeghi A, et al. Revealing bending and force in a soft body through a plant root inspired approach [J]. Scientific Reports, 2015, 5(1): 8788.
[17] Gupta P, Jensen P, De Juan E. Surgical forces and tactile perception during retinal microsurgery [J]. MICCAI, 1999, 1679: 1218-1225.
[18] Iordachita I, Sun Z, Balicki M, et al. A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery [J]. International Journal of Computer Assisted Radiology and Surgery, 2009, 4(4): 383-390.