[1] Soutis C, Moreira P. Recent advances in structural integrity of engineering composite materials [J]. Applied Composite Materials, 2020, 27: 447-448. doi:  10.1007/s10443-020-09830-6
[2] Wang B, Zhong S, Lee T L, et al. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review [J]. Advances in Mechanical Engineering, 2020, 12(4): 1-28.
[3] McIlhagger A, Archer E, McIlhagger R. Polymer Composites in the Aerospace Industry [M]. 2nd ed. Britain: Woodhead Publishing, 2020: 59-81.
[4] Harris C E, Starnes J H, Shuart M J. An assessment of the state-of-the-art in the design and manufacturing of large composite structures for aerospace vehicles[C]//Langley Research Center, National Aeronautics and Space Administration, 2001.
[5] Diamanti K, Soutis C, Hodgkinson J M. Piezoelectric transducer arrangement for the inspection of large composite structures [J]. Composites Part A: Applied Science & Manufacturing, 2007, 38(4): 1121-1130.
[6] El–sabbagh A, Steuernagel L, Ziegmann G. Characterisation of flax polypropylene composites using ultrasonic longitudinal sound wave technique [J]. Composites Part B: Engineering, 2013, 45: 1164-1172. doi:  10.1016/j.compositesb.2012.06.010
[7] Kolkoori S, Wrobel N, Zscherpel U, et al. A new X-ray backscatter imaging technique for non-destructive testing of aerospace materials [J]. Ndt & E International, 2015, 70: 41-52.
[8] Kou Guangjie, Yang Zhengwei, Jia Yong, et al. Detection on cracks in blades with complex profile based on ultrasonic infrared thermal imaging [J]. Infrared and Laser Engineering, 2019, 48(12): 1204002. (in Chinese) doi:  10.3788/IRLA201948.1204002
[9] Wang Q, Hu Q P, Qiu J X, et al. Detection of internal defects in aviation composites with differential laser infrared thermal imaging [J]. Infrared and Laser Engineering, 2019, 48(5): 0504003. (in Chinese) doi:  10.3788/IRLA201948.0504003
[10] Towsyfyan H, Biguri A, Boardman R, et al. Successes and challenges in non-destructive testing of aircraft composite structures [J]. Chinese Journal of Aeronautics, 2019, 33(3): 1-30.
[11] Ma Y, Jiang H, Dai M, et al. Cantilevered plate vibration analysis based on electronic speckle pattern interferometry and digital shearing speckle pattern interferometry [J]. Acta Optica Sinica, 2019, 39(4): 0403001. doi:  10.3788/AOS201939.0403001
[12] Sun P. Digital phase-shifting shearography for strain measurement by using a rotating platform system [J]. Optical Engineering, 2005, 44(8): 085601. doi:  10.1117/1.2010127
[13] Wang Xin, Wang Yonghong, Lv Youbin, et al. Whole field optical detection method of strain distribution of SU-8 photoresist [J]. Chinese Optics, 2016, 9(3): 379-384. (in Chinese) doi:  10.3788/co.20160903.0379
[14] Wang Yonghong, Lv Youbin, Gao Xinya, et al. Research progress in shearography and its applications [J]. Chinese Optics, 2017, 10(3): 300-309. (in Chinese) doi:  10.3788/co.20171003.0300
[15] Zhao Q, Dan X, Sun F, et al. Digital shearography for NDT: Phase measurement technique and recent developments [J]. Applied Sciences, 2018, 8(12): 2662. doi:  10.3390/app8122662
[16] Wu S, He X, Yang L. Enlarging the angle of view in Michelson-interferometer-based shearography by embedding a 4f system [J]. Applied Optics, 2011, 50(21): 3789-3794. doi:  10.1364/AO.50.003789
[17] Liu Jie, You Pinhong, Zhan Jianbin, et al. Improved SIFT fast image stitching and ghosting optimization algorithm [J]. Optics and Precision Engineering, 2020, 28(9): 2076-2084. (in Chinese) doi:  10.37188/OPE.20202809.2076
[18] Di Hongzhang, Yang Wen, Lin Pengyue, et al. Mosaic of cultural relics fragments based on SURF feature extraction descriptor and Jaccard distance [J]. Optics and Precision Engineering, 2020, 28(4): 963-972. (in Chinese)