[1] William Lawson Donald, Scott Young Alexander. Photo-sensitive cells, radiation filters and semiconductor materials for use in such cells and filters: US, 2953690[P]. 1960-09-20.
[2] Lawson W D, Nielson S, Putley E H, et al. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe [J]. Journal of Physics and Chemistry of Solids, 1959, 9(3-4): 325-329. doi:  10.1016/0022-3697(59)90110-6
[3] Antoni Rogalski. Infrared Detectors[M]. 2nd ed. Boca Raton, Florida: CRC Press, 2011.
[4] Rogalski A. Next decade in infrared detectors[C]//Proc of SPIE, 2017, 10433: 104330 L.
[5] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector array [J]. Journal of Applied Physics, 2009, 105: 091101. doi:  10.1063/1.3099572
[6] NASA. About Webb Innovations' Infrared Detectors[DB/OL]. (2015-01-01) [2022-01-17]. https://www.jwst.nasa.gov/content/about/innovations/infrared.html?utm_source=FBPAGE&utm_medium=NASA%27s+James+Webb+Space+Telescope&utm_campaign=NASASocial&linkId=122682902.
[7] Paul Jerram, James Beletic. Teledyne’s high performance infrared detectors for Space missions[C]//Proc of SPIE, 2018, 11180: 111803 D.
[8] Teledyne Imaging. HAWAII-4RG (H4RG) IR and Visible FPAs[EB/OL]. (2022-01-15) [2022-01-17]. https://www.teledyneimaging.com/en/aerospace-and-defense/products/sensors-overview/infrared-hgcdte-mct/hawaii-4 rg/.
[9] Patten E A, Goetz P M, Vilela M F, et al. High-performance MWIR/LWIR dual-band 640×480 HgCdTe/Si FPAs [J]. Journal of Electronic Materials, 2010, 39(10): 2215-2219. doi:  https://doi.org/10.1007/s11664-010-1294-1
[10] Madejczyk P, Gawron W, Keblowski A, et al. Higher operating temperature IR detectors of the MOCVD HgCdTe heterostructures [J]. Journal of Electronic Materials, 2020, 49: 6908-6917. doi:  10.1007/s11664-020-08369-3
[11] Rogalski A. Material considerations for third generation infrared photon detectors [J]. Infrared Physics & Technology, 2007, 50: 240-252. doi:  10.1016/j.infrared.2006.10.015
[12] Wen Lei, Jarek Antoszewski, Lorenzo Faraone. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors [J]. Applied Physics Reviews, 2015, 2: 041303. doi:  10.1063/1.4936577
[13] Małgorzata Kopytko, Artur Kebłowski, Waldemar Gawron, et al. MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation [J]. Optical Engineering, 2015, 54(10): 105105. doi:  10.1117/1.OE.54.10.105105
[14] Rogalski A. HgCdTe infrared detector material: History, status and outlook [J]. Reports on Progress in Physics, 2005, 68: 2267-2336. doi:  10.1088/0034-4885/68/10/R01
[15] Lynne Patrick. Selex ES Detector Developments[EB/OL]. (2016-01-10) [2022-01-17]. https://slideplayer.com/slide/4408122/.
[16] Rothman J, de Borniol E, Lasfargues G, et al. HgCdTe APDs for low-photon number IR detection[C]//Proc of SPIE, 2017, 10111: 1011119.
[17] Rothman J, Foubert K, Lasfargues G, et al. High operating temperature SWIR HgCdTe APDs for remote sensing[C]//Proc of SPIE, 2014, 9254: 92540 P.
[18] Sun Xiaoli, James B Abshire, Michael A Krainak, et al. HgCdTe avalanche photodiode array IR and visible FPAS lidar applications [J]. Optical Engineering, 2019, 58(6): 067103. doi:  10.1117/1.OE.58.6.067103
[19] Xiaoli Sun, James B Abshire, Jeffrey D Beck. HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications[C]//Proc of SPIE, 2014, 9114: 91140 K.
[20] Sun X L, Abshire J B, Beck J D, et al. HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths [J]. Optics Express, 2017, 25(14): 16589-16602. doi:  10.1364/OE.25.016589