[1] Klyshko D N. Two-photon light: Influence of filtration and a new possible EPR experiment [J]. Physics Letters A, 1988, 128(3/4): 133-137.
[2] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429-R3432. doi:  10.1103/PhysRevA.52.R3429
[3] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon "ghost" interference and diffraction [J]. Physical Review Letters, 1995, 74(18): 3600-3603. doi:  10.1103/PhysRevLett.74.3600
[4] Pittman T B, Strekalov D V, Klyshko D N, et al. Two-photon geometric optics [J]. Physical Review A, 1996, 53(4): 2804-2815. doi:  10.1103/PhysRevA.53.2804
[5] Ribeiro P H S, Barbosa G A. Direct and ghost interference in double-slit experiments with coincidence measurements [J]. Physical Review A, 1996, 54(4): 3489-3492. doi:  10.1103/PhysRevA.54.3489
[6] Barbosa G A. Quantum images in double-slit experiments with spontaneous down-conversion light [J]. Physical Review A, 1996, 54(5): 4473-4478. doi:  10.1103/PhysRevA.54.4473
[7] Pittman T B, Strekalov D V, Migdall A, et al. Can two-photon interference be considered the interference of two photons [J]. Physical Review Letters, 1996, 77(10): 1917-1920. doi:  10.1103/PhysRevLett.77.1917
[8] Fonseca E J S, Monken C H, Pádua S. Measurement of the de Broglie wavelength of a multiphoton wave packet [J]. Physical Review Letters, 1999, 82(14): 2868-2871. doi:  10.1103/PhysRevLett.82.2868
[9] Fonseca E J S, Ribeiro P H S, Pádua S, et al. Quantum interference by a nonlocal double slit [J]. Physical Review A, 1999, 60(2): 1530-1533. doi:  10.1103/PhysRevA.60.1530
[10] D’Angelo M, Chekhova M V, Shih Y H. Two-photon diffraction and quantum lithography [J]. Physical Review Letters, 2001, 87(1): 013602. doi:  10.1103/PhysRevLett.87.013602
[11] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging [J]. Physical Review Letters, 2001, 87(12): 123602. doi:  10.1103/PhysRevLett.87.123602
[12] Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source [J]. Physical Review Letters, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[13] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction [J]. Physical Review Letters, 2004, 92(9): 093903. doi:  10.1103/PhysRevLett.92.093903
[14] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation [J]. Physical Review Letters, 2004, 93(9): 093602. doi:  10.1103/PhysRevLett.93.093602
[15] Gatti A, Brambilla E, Bache M, et al. Correlated imaging, quantum and classical [J]. Physical Review A, 2004, 70(1): 235-238.
[16] Valencia A, Scarcelli G, D’Angelo M, et al. Two-photon imaging with thermal light [J]. Physical Review Letters, 2005, 94(6): 063601. doi:  10.1103/PhysRevLett.94.063601
[17] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light [J]. Optics Letters, 2005, 30(18): 2354-2356. doi:  10.1364/OL.30.002354
[18] Cao D Z, Xiong J, Wang K G. Geometrical optics in correlated imaging systems [J]. Physical Review A, 2005, 71(1): 13801. doi:  10.1103/PhysRevA.71.013801
[19] Xiong J, Cao D Z, Huang F, et al. Experimental observation of classical subwavelength interference with a pseudothermal light source [J]. Physical Review Letters, 2005, 94(17): 173601. doi:  10.1103/PhysRevLett.94.173601
[20] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation [J]. Physical Review E, 2005, 71(5): 056607. doi:  10.1103/PhysRevE.71.056607
[21] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light [J]. Physical Review Letters, 2005, 94(18): 183602. doi:  10.1103/PhysRevLett.94.183602
[22] D’Angelo M, Valencia A, Rubin M H, et al. Resolution of quantum and classical ghost imaging [J]. Physical Review A, 2005, 72(1): 013810. doi:  10.1103/PhysRevA.72.013810
[23] Zhai Y H, Chen X H, Zhang D, et al. Two-photon interference with true thermal light [J]. Physical Review A, 2005, 72(4): 043805. doi:  10.1103/PhysRevA.72.043805
[24] Scarcelli G, Berardi V, Shih Y H. Phase-conjugate mirror via two-photon thermal light imaging [J]. Applied Physics Letters, 2006, 88(6): 061106. doi:  10.1063/1.2172410
[25] Basano L, Ottonello P. Experiment in lensless ghost imaging with thermal light [J]. Applied Physics Letters, 2006, 89(9): 061106.
[26] Cheng J, Han S S, Yan Y J. Resolution and noise in ghost imaging with classical thermal light [J]. Chinese Physics, 2006, 15(9): 2002-2006. doi:  10.1088/1009-1963/15/9/017
[27] Zhang M H, Wei Q, Shen X, et al. Lensless Fourier-transform ghost imaging with classical incoherent light [J]. Physical Review A, 2007, 75(2): 021803. doi:  10.1103/PhysRevA.75.021803
[28] Liu H L, Cheng J, Han S S. Cross spectral purity and its influence on ghost imaging experiments [J]. Optics Communications, 2007, 273(1): 50-53. doi:  10.1016/j.optcom.2006.12.025
[29] Ou L H, Kuang L M. Ghost imaging with third-order correlated thermal light [J]. Journal of Physics B, 2007, 40(10): 1833-1844. doi:  10.1088/0953-4075/40/10/017
[30] Crosby S, Castelletto S, Aruldoss C, et al. Modelling of classical ghost images obtained using scattered light [J]. New Journal of Physics, 2007, 9: 285. doi:  10.1088/1367-2630/9/8/285
[31] Liu H L, Shen X, Zhu D M, et al. Fourier-transform ghost imaging with pure far-field correlated thermal light [J]. Physical Review A, 2007, 76(5): 053808. doi:  10.1103/PhysRevA.76.053808
[32] Liu H L, Cheng J, Han S S. Ghost imaging in Fourier space [J]. Journal of Applied Physics, 2007, 102(10): 103102. doi:  10.1063/1.2812597
[33] Erkmen B I, Shapiro J H. Unified theory of ghost imaging with Gaussian-State light [J]. Physical Review A, 2008, 77(4): 043809. doi:  10.1103/PhysRevA.77.043809
[34] Meyers R, Deacon, K S, Shih Y H. Ghost-imaging experiment by measuring reflected photons [J]. Physical Review A, 2008, 77(4): 041801. doi:  10.1103/PhysRevA.77.041801
[35] Liu H L, Han S S. Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging [J]. Optics Letters, 2008, 33(8): 824-826. doi:  10.1364/OL.33.000824
[36] Ferri F, Magatti D, Sala V G, et al. Longitudinal coherence in thermal ghost imaging [J]. Applied Physics Letters, 2008, 92(26): 261109. doi:  10.1063/1.2945642
[37] Zhang Y T, He C J, Li H G, et al. Novel ghost imaging method for a pure phase object [J]. Chinese Physics Letters, 2008, 25(7): 2481-2484. doi:  10.1088/0256-307X/25/7/041
[38] Cheng J. Transfer functions in lensless ghost-imaging systems [J]. Physical Review A, 2008, 78(4): 043823. doi:  10.1103/PhysRevA.78.043823
[39] Ying G R, Shen Q W, Han S S. A two-step phase-retrieval method in Fourier-transform ghost imaging [J]. Optics Communications, 2008, 281(20): 5130-5132. doi:  10.1016/j.optcom.2008.07.026
[40] Shen X, Bai Y F, Qin T, et al. Experimental investigation of quality of lensless ghost imaging with pseudo-thermal light [J]. Chinese Physics Letters, 2008, 25(11): 3968-3971. doi:  10.1088/0256-307X/25/11/036
[41] Gong W L, Zhang P L, Shen X, et al. Ghost “pinhole” imaging in Fraunhofer region [J]. Applied Physics Letters, 2009, 95(7): 071110. doi:  10.1063/1.3207832
[42] Zhao C Q, Gong W L, Chen M L, et al. Ghost imaging lidar via sparsity constraints [J]. Applied Physics Letters, 2012, 101(14): 141123. doi:  10.1063/1.4757874
[43] Liu X F, Yao X R, Lan R M, et al. Edge detection based on gradient ghost imaging [J]. Optics Express, 2015, 23(26): 33802-33811. doi:  10.1364/OE.23.033802
[44] Gong W L, Zhao C Q, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Scientific Reports, 2016, 6: 26133. doi:  10.1038/srep26133
[45] Paniagua-Diaz A M, Starshynov I, Fayard N, et al. Blind ghost imaging [J]. Optica, 2019, 6(4): 460-464. doi:  10.1364/OPTICA.6.000460
[46] Sun B Q, Jiang S, Ma Y Y, et al. Application and development of single pixel imaging in the special wavebands and 3D imaging [J]. Infrared and Laser Engineering, 2020, 49(3): 0303016. (in Chinese) doi:  10.3788/IRLA202049.0303016
[47] Shi F, Lu T X, Yang S N, et al. Target recognition method based on single-pixel imaging system and deep learning in the noisy environment [J]. Infrared and Laser Engineering, 2020, 49(6): 20200010. (in Chinese) doi:  10.3788/irla.11_2020-0010
[48] Gong W L. Sub-Nyquist ghost imaging by optimizing point spread function [J]. Optics Express, 2020, 29(11): 17591-17601.
[49] Huang X W, Nan S Q, Tan W, et al. Ghost imaging influenced by a supersonic wind-induced random environment [J]. Optics Letters, 2021, 46(5): 1009-1012. doi:  10.1364/OL.417763
[50] Bai Y F, Han S S. Ghost imaging with thermal light by third-order correlation [J]. Physical Review A, 2007, 76(4): 043828. doi:  10.1103/PhysRevA.76.043828
[51] Cao D Z, Xiong J, Zhang S H, et al. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light [J]. Applied Physics Letters, 2008, 92(20): 201102. doi:  10.1063/1.2919719
[52] Kuplicki K, Chan K W C. High-order ghost imaging using non-Rayleigh speckle sources [J]. Optics Express, 2016, 24(23): 26766-26776. doi:  10.1364/OE.24.026766
[53] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging [J]. Applied Physics Letters, 2009, 95(13): 131110. doi:  10.1063/1.3238296
[54] Huang H Y, Zhou C, Tian T, et al. High-quality compressive ghost imaging [J]. Optics Communications, 2018, 412: 60-65. doi:  10.1016/j.optcom.2017.12.010
[55] Shi X H, Huang X W, Nan S Q, et al. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method [J]. Laser Physics Letters, 2018, 15(4): 045204. doi:  10.1088/1612-202X/aaa5f6
[56] Zhao Z D, Yang Z H, Li G L. Sub-Nyquist single-pixel imaging by optimizing sampling basis [J]. Optics and Precision Engineering, 2021, 29(5): 1008-1013. (in Chinese)
[57] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802. doi:  10.1103/PhysRevA.78.061802
[58] Clemente P, Duran, V, Torres-Company V, et al. Optical encryption based on computational ghost imaging [J]. Optics Letters, 2010, 35(14): 2391-2393.
[59] Shi F, Yu D Q, Lin Z T, et al. Depth estimation in computational ghost imaging system using autofocusing method with adaptive focus window [J]. Infrared and Laser Engineering, 2020, 49(3): 0303020. (in Chinese) doi:  10.3788/IRLA202049.0303020
[60] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603. doi:  10.1103/PhysRevLett.104.253603
[61] Li M F, Zhang Y R, Luo K H, et al. Time correspondence differential ghost imaging [J]. Physical Review A, 2013, 87(3): 033813.
[62] Sun B Q, Welsh S S, Edgar M P, et al. Normalized ghost imaging [J]. Optics Express, 2012, 20(15): 16892-16901. doi:  10.1364/OE.20.016892
[63] Sun S, Liu W T, Gu J H, et al. Ghost imaging normalized by second-order coherence [J]. Optics Letters, 2019, 44(24): 5993-5996. doi:  10.1364/OL.44.005993
[64] Zhang C, Guo S X, Cao J S, et al. Object reconstitution using pseudo-inverse for ghost imaging [J]. Optics Express, 2014, 22(24): 30063-30073. doi:  10.1364/OE.22.030063
[65] Gong W L. High-resolution pseudo-inverse ghost imaging [J]. Photonic Research, 2017, 3(5): 234-237.
[66] Xu Y K, Liu W T, Zhang E F, et al. Is ghost imaging intrinsically more powerful against scattering? [J]. Optics Express, 2015, 23(26): 32993-33000.
[67] Deng C J, Gong W L, Han S S. Pulse-compression ghost imaging lidar via coherent detection [J]. Optics Express, 2016, 24(23): 25983-25994. doi:  10.1364/OE.24.025983
[68] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique [J]. Laser & Optoelectronics Progress, 2020, 57(6): 060001. (in Chinese)
[69] Wu Y B, Yang Z H, Tang Z L. Experiment study on anti-disturbance ability of underwater ghost imaging [J]. Laser & Optoelectronics Progress, 2021, 58(6): 0611002. (in Chinese)
[70] Liu W T, Sun S, Hu H K, et al. Progress and prospect for ghost imaging of moving objects [J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011001. (in Chinese)
[71] Zeng X, Bai Y F, Shi X H, et al. The influence of the positive and negative defocusing on lensless ghost imaging [J]. Optics Communications, 2017, 382: 415-420. doi:  10.1016/j.optcom.2016.07.023
[72] Wang C F, Zhang D W, Bai Y F, et al. Ghost imaging for a reflected object with a rough surface [J]. Physical Review A, 2010, 82(6): 063814. doi:  10.1103/PhysRevA.82.063814
[73] Nan S Q, Bai Y F, Shi X H, et al. Experimental investigation of ghost imaging of reflective objects with different surface roughness [J]. Photonic Research, 2017, 5(4): 372-376. doi:  10.1364/PRJ.5.000372
[74] Gong W L, Han S S. Correlated imaging in scattering media [J]. Optics Letters, 2011, 36(3): 394-396. doi:  10.1364/OL.36.000394
[75] 张银佐. 关联成像实验研究及后期解算算法设计 [D]. 上海: 上海交通大学, 2014: 34–40.

Zhang Y Z. Experimental study of correlated imaging and algorithm design [D]. Shanghai: Shanghai Jiao Tong University, 2014: 34–40. (in Chinese)
[76] Fu Q, Bai Y F, Huang X W, et al. Positive influence of the scattering medium on reflective ghost imaging [J]. Photonic Research, 2019, 7(12): 1468-1472. doi:  10.1364/PRJ.7.001468
[77] Li J H, Yang D Y, Luo B, et al. Image quality recovery in binary ghost imaging by adding random noise [J]. Optics Letters, 2017, 42(8): 1640-1643. doi:  10.1364/OL.42.001640
[78] Cheng J. Ghost imaging through turbulent atmosphere [J]. Optics Express, 2009, 17(10): 7916-7921. doi:  10.1364/OE.17.007916
[79] Hardy N D, Shapiro J H. Reflective ghost imaging through turbulence [J]. Physical Review A, 2011, 84(6): 063824. doi:  10.1103/PhysRevA.84.063824
[80] Luo C L, Lei P, Li Z L, et al. Long-distance ghost imaging with an almost non-diffracting Lorentz source in atmospheric turbulence [J]. Laser Physics Letters, 2018, 15(8): 085201. doi:  10.1088/1612-202X/aac54a
[81] Tan W, Huang X W, Nan S Q, et al. Effect of the collection range of a bucket detector on ghost imaging through turbulent atmosphere [J]. Journal of the Optical Society of America A, 2019, 36(7): 1261-1266. doi:  10.1364/JOSAA.36.001261
[82] Zhang Y X, Wang Y G. Computational lensless ghost imaging in a slant path non-Kolmogorov turbulent atmosphere [J]. Optik, 2012, 123(15): 1360-1363. doi:  10.1016/j.ijleo.2011.07.072
[83] Wang X, Zhang Y X. Lens ghost imaging in a non-Kolmogorov slant turbulence atmosphere [J]. Optik, 2013, 124(20): 4378-4382. doi:  10.1016/j.ijleo.2013.01.006
[84] Tan W, Huang X W, Nan S Q, et al. Ghost imaging through inhomogeneous turbulent atmosphere along an uplink path and a downlink path [J]. OSA Continuum, 2020, 3(5): 1222-1231. doi:  10.1364/OSAC.387075
[85] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: High-order correlations vs. background subtraction [J]. Optics Express, 2010, 18(6): 5562-5573. doi:  10.1364/OE.18.005562
[86] Shi X H, Li H X, Bai Y F, et al. Negative influence of detector noise on ghost imaging based on the photon counting technique at low light levels [J]. Applied Optics, 2017, 56(26): 7320-7326. doi:  10.1364/AO.56.007320
[87] Xie P Y, Shi X H, Huang X W, et al. Binary detection in ghost imaging with preserved grayscale [J]. European Physical Journal D, 2019, 73(5): 102. doi:  10.1140/epjd/e2019-90592-3
[88] Andrews L C, Phillips R L, Hopen C Y, et al. Theory of optical scintillation [J]. Journal of the Optical Society of America A, 1999, 16(6): 1417-1429. doi:  10.1364/JOSAA.16.001417
[89] Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media[M]. 2nd Edition. Bellingham: SPIE, 2005.