[1] Xie Xiumin, Xu Qiang, Chen Jian, et al. Research progress on antimonide based type-Ⅱ superlattice mid-and long-infrared detectors [J]. Laser Technology, 2020, 44(6): 688-694. (in Chinese)
[2] Chang Faran, Jiang Zhi, Wang Guowei, et al. Progress of long wavelength IR FPA arrays based on antimonide compounds superlattice [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(2): 28-45. (in Chinese)
[3] Manurkar P, Ramezani-Darvish S, Nguyen B M, et al. High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices [J]. Applied Physics Letters, 2010, 97(19): 1030.
[4] Wang Guowei, Xu Yingqiang, Niu Zhichuan. Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Challenges and solutions [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(2): 368-389. (in Chinese)
[5] Antoni Rogalski. Infrared and Terahertz Detectors[M]. New York: CRC, 2019: 96-97.
[6] Abolmaali F, Brettin A, Green A, et al. Photonic jets for highly effificient mid-IR focal plane arrays with large angle-of-view [J]. Optics Express, 2017, 25(25): 31174-31185. doi:  10.1364/OE.25.031174
[7] Bai Jie, Hu Weida, Guo Nan, et al. Performance optimization of insb infrared focal-plane arrays with diffractive microlenses [J]. Journal of Electronic Materials, 2014, 43(8): 2795-2801. doi:  10.1007/s11664-014-3054-0
[8] Allen K W, Abolmaali F, Duran J M, et al. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres [J]. Applied Physics Letters, 2016, 108(24): 342-473.
[9] Zhang S, Soibel A, Keo S A, et al. Solid-immersion metalenses for infrared focal plane arrays [J]. Applied Physics Letters, 2018, 113(11): 111104.
[10] Soibel A, Keo S A, Fisher A, et al. High operating temperature nBn detector with monolithically integrated micro lens [J]. Applied Physics Letters, 2018, 112(4): 041105. doi:  10.1063/1.5011348
[11] Fan Qingbin, Xu Ting. Research progress of imaging technologies based on electromagnetic metasurfaces [J]. Acta Physica Sinica, 2017, 66(14): 114208. (in Chinese)
[12] Li Xiong, Ma Xiaoliang, Luo Xiangang. Principles and applications of metasurfaces with phase modulation [J]. Opto-Electronic Engineering, 2017, 44(3): 255-275. (in Chinese)
[13] Saima Kanwal, Wen Jing, Yu Binbin, et al. High-efficiency, broadband, near diffffraction-limited, dielectric metalens in ultraviolet spectrum [J]. Nanomaterials, 2020, 10(3): 490. doi:  10.3390/nano10030490
[14] Chen Xianzhong, Chen Ming, Mehmood M Q, et al. Longitudinal multifoci metalens for circularly polarized light [J]. Advanced Optical Materials, 2015, 3(9): 1201-1206. doi:  10.1002/adom.201500110
[15] Fu Rao, Li Zile, Zheng Guoxing, et al. Reconfifigurable step-zoom metalens without optical and mechanical compensations [J]. Optics Express, 2019, 27(9): 12221-12230. doi:  10.1364/OE.27.012221
[16] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation [J]. Nano Letters, 2012, 12(11): 5750-5755. doi:  10.1021/nl303031j
[17] Huang Lingling, Chen Xianzhong, Bai Benfeng, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity [J]. Light: Science & Applications, 2013, 2(3): e70.
[18] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing [J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.
[19] Ren Haoran, Li Xiangping, Zhang Qiming, et al. On-chip noninterference angular momentum multiplexing of broadband light [J]. Science, 2016, 352(6287): 805-809. doi:  10.1126/science.aaf1112
[20] Zhang Xiaohu, Jin Jinjin, Pu Mingbo, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes [J]. Nanoscale, 2017, 9(4): 1409-1415. doi:  10.1039/C6NR07854K
[21] Lei W, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms [J]. Optica, 2016, 3(12): 1504-1505. doi:  10.1364/OPTICA.3.001504
[22] Choudhury S M, Wang D, Chaudhuri K, et al. Material platforms for optical metasurfaces [J]. Nanophotonics, 2018, 7(6): 959-987. doi:  10.1515/nanoph-2017-0130
[23] Zhang Dongling, Bai Yonglin, Feng Xiaoqiang, et al. Analysis of the optical field of solid immersion lens by FDTD [J]. Acta Photonica Sinica, 2004, 33(7): 884-888. (in Chinese)
[24] Xie Jianping, Lu Yonghua, Wang Pei, et al. Analysis of near-field distribution of solid immersion lens by angular spectrum [J]. Acta Optica Sinica, 2002, 22(4): 413-416. (in Chinese) doi:  10.3321/j.issn:0253-2239.2002.04.008
[25] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens [J]. Optics Express, 2014, 22(21): 26212-26221. doi:  10.1364/OE.22.026212
[26] Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures [J]. Optics Communications, 2016, 366: 174-178. doi:  10.1016/j.optcom.2015.12.043
[27] Yue Song, Wang Ran, Hou Maojing, et al. Narrow-band perfect absorption utilizing higher-order surface plasmon resonance [J]. Infrared and Laser Engineering, 2020, 49(5): 20190489. (in Chinese)
[28] Fan Q, Liu M, Yang C, et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging [J]. Applied Physics Letters, 2018, 113(20): 201104. doi:  10.1063/1.5050562