[1] Bashkatov A N, Genina E A, Tuchin V V. Optical properties of shin, subcutaneous, and muscle tissues: a review [J]. Journal of Innovative Optical Health Sciences, 2011, 4(1): 9-38. doi:  10.1142/S1793545811001319
[2] Wiersma D S. Disordered photonics [J]. Nature Photonics, 2013, 7(3): 188-196. doi:  10.1038/nphoton.2013.29
[3] 朱磊, 邵晓鹏. 散射成像技术的研究进展[J]. 光学学报, 2020, 40(1): 83-97. doi:  10.3788/AOS202040.0111005

Zhu L, Shao X. Research progress on scattering imaging technology [J]. Acta Optica Sinica, 2020, 40(1): 0111005. (in Chinese) doi:  10.3788/AOS202040.0111005
[4] 金欣, 王枭宇, 杜东宇, 等. 散射成像研究现状及展望[J]. 激光与光电子学进展, 2021, 58(18): 1811002. doi:  10.3788/LOP202158.1811002

Jin X, Wang X, Du D, et al. Progress and prospect of scattering imaging [J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811002. (in Chinese) doi:  10.3788/LOP202158.1811002
[5] 谢向生, 刘忆琨, 梁浩文, 等. 散斑相关成像: 从点扩展函数到光场全要素[J]. 光学学报, 2020, 40(1): 71-82. doi:  10.3788/AOS202040.0111004

Xie X, Liu Y, Liang H, et al. Speckle correlation imaging from point spread functions tolight field plenoptics [J]. Acta Optica Sinica, 2020, 40(1): 0111004. (in Chinese) doi:  10.3788/AOS202040.0111004
[6] 张润南, 蔡泽伟, 孙佳嵩, 等. 光场相干测量及其在计算成像中的应用[J]. 激光与光电子学进展, 2021, 58(18): 1811003. doi:  10.3788/LOP202158.1811003

Zhang R, Cai Z, Sun S, et al. Optical-field coherence measurement and its applications in computational imaging [J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811003. (in Chinese) doi:  10.3788/LOP202158.1811003
[7] 李琼瑶, 扎西巴毛, 陈子阳, 等. 激光通过不同厚度的强散射介质的聚焦[J]. 光学学报, 2020, 40(1): 237-242. doi:  10.3788/AOS202040.0111016

Li Q, Zhaxi B, Chen Z, et al. Focusing of laser through strong scattering media with different thicknesses [J]. Acta Optica Sinica, 2020, 40(1): 0111016. (in Chinese) doi:  10.3788/AOS202040.0111016
[8] 李修建, 唐武盛, 衣文军, 等. 宽视场远距离光学散射成像技术研究进展[J]. 中国激光, 2021, 48(4): 207-222. doi:  10.3788/CJL202148.0401012

Li X, Tang W, Yi W, et al. Review of optical scattering imaging technology with wide field of view and long distance [J]. Chinese Journal of Laser, 2021, 48(4): 207-222. (in Chinese) doi:  10.3788/CJL202148.0401012
[9] Wang K, Sun W, Richie C T, et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue [J]. Nature Communication, 2015, 6(1): 1-6.
[10] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181. doi:  10.1126/science.1957169
[11] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples [J]. Nature Photonics, 2008, 2(2): 110-115. doi:  10.1038/nphoton.2007.297
[12] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media [J]. Nature Photonics, 2014, 8(12): 931-936. doi:  10.1038/nphoton.2014.251
[13] Yang J, Li J, He S, et al. Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation [J]. Optica, 2019, 6(3): 250-256. doi:  10.1364/OPTICA.6.000250
[14] Qiao M, Liu H, Han S. Bidirectional image transmission through physically thick scattering media using digital optical phase conjugation [J]. Optics Express, 2018, 26(25): 33066-33079. doi:  10.1364/OE.26.033066
[15] Yu Y W, Sun C C, Liu X C, et al. Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium [J]. OSA Continuum, 2019, 2(3): 703-714. doi:  10.1364/OSAC.2.000703
[16] Wang Y M, Judkewitz B, DiMarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light [J]. Nature Communication, 2012, 3(1): 928. doi:  doi.org/10.1038/ncomms1925
[17] Zhao L, Yang M, Jiang Y, et al. Optical fluence compensation for handheld photoacoustic probe: An in vivo human study case [J]. Journal of Innovative Optical Health Sciences, 2017, 10(04): 1740002. doi:  10.1142/S1793545817400028
[18] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging [J]. Nature Communication, 2012, 3(1): 1-8.
[19] Satat G, Heshmat B, Raviv D, et al. All photons imaging through volumetric scattering [J]. Scientific Reports, 2016, 6: 33946. doi:  doi.org/10.1038/srep33946
[20] Baek Y, Lee K, Park Y. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix [J]. Physical Review Applied, 2018, 10(2): 024053. doi:  10.1103/PhysRevApplied.10.024053
[21] Zhuang B, Xu C, Geng Y, et al. An early study on imaging 3 d objects hidden behind highly scattering media: a round-trip optical transmission matrix method [J]. Applied Sciences, 2018, 8(7): 1036. doi:  10.3390/app8071036
[22] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media [J]. Physical Review Letters, 2010, 104(10): 100601. doi:  10.1103/PhysRevLett.104.100601
[23] Popoff S M, Lerosey G, Fink M, et al. Image transmission through an opaque material [J]. Nature Communication, 2010, 1(1): 1-5.
[24] Hong P, Ojambati O S, Lagendijk A, et al. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping [J]. Optica, 2018, 5(7): 844-849. doi:  10.1364/OPTICA.5.000844
[25] He H X, Guan Y F, Zhou J Y. Image restoration through thin turbid layers by correlation with a known object [J]. Optics Express, 2013, 21(10): 12539-12545. doi:  10.1364/OE.21.012539
[26] He H X, Wong K S. An improved wavefront determination method based on phase conjugation for imaging through thin scattering medium [J]. Journal of Optics, 2016, 18(8): 085604. doi:  10.1088/2040-8978/18/8/085604
[27] Wang F J, He H X, Zhuang H C, et al. Controlled light field concentration through turbid biological membrane for phototherapy [J]. Biomedical Optics Express, 2015, 6(6): 2237-2245. doi:  10.1364/BOE.6.002237
[28] Li S, Zhong J. Dynamic imaging through turbid media based on digital holography [J]. Journal of the Optical Society of America A, 2014, 31(3): 480-486. doi:  10.1364/JOSAA.31.000480
[29] Singh A K, Naik D N, Pedrini G, et al. Looking through a diffuser and around an opaque surface: A holographic approach [J]. Optics Express, 2014, 22(7): 7694-7701. doi:  10.1364/OE.22.007694
[30] Harm W, Roider C, Jesacher A, et al. Lensless imaging through thin diffusive media [J]. Optics Express, 2014, 22(18): 22146-22156. doi:  10.1364/OE.22.022146
[31] Isaac F. Looking through walls and around corners [J]. Physica A, 1990, 168(1): 49-65. doi:  10.1016/0378-4371(90)90357-X
[32] Newman J A, Webb K J. Imaging optical fields through heavily scattering media [J]. Physical Review Letters, 2014, 113(26): 263903. doi:  10.1103/PhysRevLett.113.263903
[33] Stern G, Katz O. Noninvasive focusing through scattering layers using speckle correlations [J]. Optics Letters, 2019, 44(1): 143-146. doi:  10.1364/OL.44.000143
[34] Xie X, He Q, Liu Y, et al. Non-invasive optical imaging using the extension of the Fourier–domain shower–curtain effect [J]. Optics Letters, 2021, 46(1): 98-101. doi:  10.1364/OL.415181
[35] Gardner D F, Divitt S, Watnik A T. Ptychographic imaging of incoherently illuminated extended objects using speckle correlations [J]. Applied Optics, 2019, 58(13): 3564-3569. doi:  10.1364/AO.58.003564
[36] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media [J]. Scientific Reports, 2016, 6: 33558. doi:  doi.org/10.1038/srep33558
[37] Shi Y, Liu Y, Wang J, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax [J]. Applied Physics Letters, 2017, 110(23): 231101. doi:  10.1063/1.4985010
[38] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect [J]. Optica, 2016, 3(1): 71-74. doi:  10.1364/OPTICA.3.000071
[39] Takasaki K T, Fleischer J W. Phase-space measurement for depth-resolved memory-effect imaging [J]. Optics Express, 2014, 22(25): 31426-31433. doi:  10.1364/OE.22.031426
[40] Bertolotti J, Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers [J]. Nature, 2012, 491(7423): 232-234. doi:  10.1038/nature11578
[41] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations [J]. Nature Photonics, 2014, 8(10): 784-790. doi:  10.1038/nphoton.2014.189
[42] 邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(02): 11-55. doi:  10.3788/LOP57.020001

Shao X P, Liu F, Li W, et al. Latest progress in computational imaging technology and application [J]. Laser & Optoelectronics Progress, 2020, 57(2): 020001. (in Chinese) doi:  10.3788/LOP57.020001
[43] Li Y, Xue Y, Tian L. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media [J]. Optica, 2018, 5(10): 1181-1190. doi:  10.1364/OPTICA.5.001181
[44] Zhu S, Guo E, Jie G U, et al. Imaging through unknown scattering media based on physics-informed learning [J]. Photonics Research, 2021, 9(5): B210-B219. doi:  10.1364/PRJ.416551
[45] Wang F, Wang C L, Deng C J, et al. Single-pixel imaging using physics enhanced deep learning [J]. Photonics Research, 2022, 10(1): 104-110. doi:  10.1364/PRJ.440123
[46] 朱硕, 郭恩来, 柏连发, 等. 高效学习的透过未知散射介质的相位恢复方法[J]. 红外与激光工程, 2022, 51(02): 416-424. doi:  10.3788/IRLA20210889

Zhu S, Guo E, Bai L, et al. Efficient learning-based phase retrieval method through unknown scattering media [J]. Infrared and Laser Engineering, 2022, 51(2): 20210899. (in Chinese) doi:  10.3788/IRLA20210889
[47] Mosk A, Silberberg Y, Webb K, et al. Imaging, sensing, and communication through highly scattering complex media[R]. Purdue Univ Lafayette, 2015.
[48] Rosen J, de Aguiar H B, Anand V, et al. Roadmap on chaos-inspired imaging technologies (CI2-Tech) [J]. Applied Physics B, 2022, 128(3): 1-26.
[49] He Q. Non-invasive optical imaging with extended Fourier-domain shower-curtain effect [D]. Shantou University, 2021: 20-21.
[50] Feng S, Kane C, Lee P A, et al. Correlations and fluctuations of coherent wave transmission through disordered media [J]. Physical Review Letters, 1988, 61(7): 834-837. doi:  10.1103/PhysRevLett.61.834
[51] He H, Xie X, Liu Y, et al. Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method [J]. Journal of Innovative Optical Health Sciences, 2019, 12(4): 1930005. doi:  10.1142/S1793545819300052
[52] Long L, Quan L, Shuai S, et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function [J]. Optics Letters, 2018, 43(8): 1670-1673. doi:  10.1364/OL.43.001670
[53] Wei Y, Lu D, Liao M, et al. Noninvasive imaging of two isolated objects through a thin scattering medium beyond the 3 D optical memory effect [J]. Optics Express, 2021, 29(12): 18807-18816. doi:  10.1364/OE.424517
[54] Xie X, Zhuang H, He H, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation [J]. Scientific Reports, 2018, 8(1): 1-8.
[55] Xu X, Xie X, Abhilash T, et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference [J]. Optics Express, 2018, 26(12): 15073-15083. doi:  10.1364/OE.26.015073
[56] Zhu L, de Monvel J B, Berto P, et al. Chromato-axial memory effect through a forward-scattering slab [J]. Optica, 2020, 7(4): 338-345. doi:  10.1364/OPTICA.382209
[57] Dror I, Sandrov A, Kopeika N S. Investigation of the influence of inhomogenous scattering media on image quality: The shower curtain effect[C]//Proceedings of SPIE-The International Society for Optical Engineering, 1996, 2828: 342-352.
[58] Dror I, Sandrov A, Kopeika N S, et al. Experimental investigation of the influence of the relative position of the scattering layer on image quality: The shower curtain effect [J]. Applied Optics, 1998, 37(27): 6495-6499. doi:  10.1364/AO.37.006495
[59] Belov V V, Borisov B D. T-effect and shower curtain effect[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4338: 8-16.
[60] Kuga Y, Ishimaru A. Modulation transfer function of layered inhomogeneous random media using the small-angle approximation [J]. Applied Optics, 1986, 25(23): 4382-4382. doi:  10.1364/AO.25.004382
[61] Bruscaglioni P, Donelli P, Ismaelli A, et al. Inhomogeneity of turbid media and its effect on the MTF of an optical system [J]. Il Nuovo Cimento D, 1993, 15(5): 775-783. doi:  10.1007/BF02482444
[62] Zege E P, Ivanov A P, Katsev I L. Image Transfer Through a Scattering Medium[M]. New York: Springer-Verlag, 1991.
[63] Jaruwatanadilok S, Ishimaru A, Kuga Y. Optical imaging through clouds and fog [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(8): 1834-1843. doi:  10.1109/TGRS.2003.813845
[64] Grégoire T, Gilles R. Aerosol lenses propagation model [J]. Optics Letters, 2011, 36(17): 3419-3421. doi:  10.1364/OL.36.003419
[65] Tremblay G, Bernier R, Roy G. The shower curtain effect paradoxes[C]//Optics in Atmospheric Propagation and Adaptive Systems XVIII. International Society for Optics and Photonics, 2015, 9641: 964107.
[66] Goodman J W. Statistical Optics[M]. Canada: John Wiley & Sons, 1986.
[67] Wu H, Meng X, Yang X, et al. Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning [J]. Optics and Lasers in Engineering, 2022, 149: 106819. doi:  10.1016/j.optlaseng.2021.106819
[68] Yang X, Pu Y, Psaltis D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy [J]. Optics Express, 2014, 22(3): 3405-3413. doi:  10.1364/OE.22.003405
[69] Wu T, Dong J, Shao X, et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity [J]. Optics Express, 2017, 25(22): 27182-27194. doi:  10.1364/OE.25.027182
[70] Newman J A, Luo Q, Webb K J. Imaging hidden objects with spatial speckle intensity correlations over object position [J]. Physical Review Letters, 2016, 116(7): 073902. doi:  10.1103/PhysRevLett.116.073902
[71] Porat, A, Andresen E R, Rigneault H, et al. Widefield lensless imaging through a fiber bundle via speckle correlations [J]. Optics Express, 2016, 24(15): 16835-16855. doi:  10.1364/OE.24.016835
[72] Schott S, Bertolotti J, Leger J F, et al. Characterization of the angular memory effect of scattered light in biological tissues [J]. Optics Express, 2015, 23(10): 13505-13516. doi:  10.1364/OE.23.013505
[73] Zhuang H, He H, Xie X, et al. High speed color imaging through scattering media with a large field of view [J]. Scientific Reports, 2016, 6: 32696. doi:  10.1038/srep32696
[74] Chen Q, He H, Xu X, et al. Memory effect based filter to improve imaging quality through scattering layers [J]. IEEE Photonics Journal, 2018, 10(5): 1-10.
[75] Akkermans E, Montambaux G. Mesoscopic Physics Of Electrons and Photons[M].Cambridge University Press, 2007.
[76] Goodman J W. Speckle Phenomena in Optics: Theory and applications[M].Roberts and Company Publishers, 2007.
[77] Fienup J R. Phase retrieval algorithms: A comparison [J]. Applied Optics, 1982, 21(15): 2758-2769. doi:  10.1364/AO.21.002758
[78] Hoppe W. Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference [J]. Acta Crystallographica, 2014, 25(4): 495-501.
[79] Pfeiffer F. X-ray ptychography [J]. Nature Photonics, 2018, 12(1): 9-17. doi:  10.1038/s41566-017-0072-5
[80] Rodenburg J M. Ptychography and related diffractive imaging methods [J]. Advances in Imaging & Electron Physics, 2008, 150(7): 87-184.
[81] Zhou M, Li R, Peng T, et al. Retrieval of non-sparse objects through scattering media beyond the memory effect [J]. Journal of Optics, 2020, 22(8): 085606. doi:  10.1088/2040-8986/aba0fc
[82] Faulkner H, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm [J]. Physical Review Letters, 2004, 93(2): 023903. doi:  10.1103/PhysRevLett.93.023903
[83] Rodenburg J M, Hurst A C, Cullis A G. Transmission microscopy without lenses for objects of unlimited size [J]. Ultramicroscopy, 2007, 107(2-3): 227-231. doi:  10.1016/j.ultramic.2006.07.007
[84] Rodenburg J M, Faulkner H. A phase retrieval algorithm for shifting illumination [J]. Applied Physics Letters, 2004, 85(20): 4795-4797. doi:  10.1063/1.1823034
[85] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging [J]. Ultramicroscopy, 2009, 109(10): 1256-1262. doi:  10.1016/j.ultramic.2009.05.012
[86] Matthias H, Christian S, Sophie B, et al. Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations [J]. Optics Express, 2018, 26(8): 9866-9881. doi:  10.1364/OE.26.009866
[87] 肖晓, 杜舒曼, 赵富, 等. 基于赝热光照明的单发光学散斑成像[J]. 物理学报, 2019, 68(03): 164-171. doi:  10.7498/aps.68.20181723

Xiao X, Du S, Zhao F, et al. Single-shot optical speckle imaging based on pseudothermal illumination [J]. Acta Physica Sinica, 2019, 68(3): 164-171. (in Chinese) doi:  10.7498/aps.68.20181723
[88] Fienup J R. Reconstruction of an object from modulus of its Fourier transform [J]. Optics Letters, 1978, 3(1): 27-29. doi:  10.1364/OL.3.000027
[89] 左超, 陈钱. 计算光学成像: 何来, 何处, 何去, 何从?[J]. 红外与激光工程, 2022, 51(02): 158-338. doi:  10.3788/IRLA20220110

Zuo C, Chen Q. Computational optical imaging: An overview [J]. Infrared and Laser Engineering, 2022, 51(02): 20220110. (in Chinese) doi:  10.3788/IRLA20220110
[90] 陈琦, 徐熙平, 姜肇国, 等. 基于光场相机的深度面光场计算重构[J]. 光学精密工程, 2018, 26(3): 708-714. doi:  10.3788/OPE.20182603.0708

Chen Q, Xu X, Jiang Z, et al. Light field computational reconstruction from focal planes based on light field camera [J]. Optics and Precision Engineering, 2018, 26(3): 708-714. (in Chinese) doi:  10.3788/OPE.20182603.0708
[91] 吴笑天, 吕博, 刘博等. 组合曝光的计算成像系统及其复原[J]. 光学精密工程, 2021, 29(02): 452-462. doi:  10.37188/OPE.20212902.0452

Wu X, Lu B, Liu B, et al. Combined exposure computational imaging system and image restoration method [J]. Optics and Precision Engineering, 2021, 29(2): 452-462. (in Chinese) doi:  10.37188/OPE.20212902.0452
[92] 董磊, 王斌, 刘欣悦. 多光束傅里叶望远镜的关键技术[J]. 中国光学, 2010, 3(5): 440-445. doi:  10.3969/j.issn.2095-1531.2010.05.004

Dong L, Wang B, Liu X. Introduction to key techniques of multiple beam Fourier telescopy [J]. Chinese Optics, 2010, 3(5): 440-445. (in Chinese) doi:  10.3969/j.issn.2095-1531.2010.05.004
[93] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy [J]. Nature Photonics, 2013, 7(9): 739-745. doi:  10.1038/nphoton.2013.187
[94] Zheng G A. Breakthroughs in photonics 2013: Fourier ptychographic imaging [J]. IEEE Photonics Journal, 2014, 6(2): 1-7.
[95] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging [J]. Optics Express, 2013, 21(26): 32400-32410. doi:  10.1364/OE.21.032400
[96] Pan A, Zuo C, Yao B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine [J]. Reports on Progress in Physics, 2020, 83(9): 096101. doi:  10.1088/1361-6633/aba6f0
[97] 杨虹, 黄远辉, 龚昌妹, 等. 散射介质超衍射极限技术研究进展[J]. 中国光学, 2014, 7(1): 1-25. doi:  10.3788/CO.20140701.0001

Yang H, Huang Y, Gong C, et al. Advances on techniques of breaking diffraction limitation using scattering medium [J]. Chinese Optics, 2014, 7(1): 1-25. (in Chinese) doi:  10.3788/CO.20140701.0001
[98] Xu W, Lin H, Wang H, et al. Reconstruction method of a ptychographic dataset with unknown positions [J]. Optics Letters, 2020, 45(16): 4634-4637.
[99] 王东, 马迎军, 刘泉, 等. 可见光域多波长叠层衍射成像的实验研究[J]. 物理学报, 2015, 64(08): 150-160. doi:  10.7498/aps.64.084203

Wang D, Ma Y, Liu Q, et al. Experimental study on multi-wavelength ptychographic imaging in visible light band [J]. Acta Physica Sinica, 2015, 64(8): 150-160. (in Chinese) doi:  10.7498/aps.64.084203
[100] Yang D, Zhang J, Tao Y, et al. Dynamic coherent diffractive imaging with a physics-driven untrained learning method [J]. Optics Express, 2021, 29(20): 31426-31442. doi:  10.1364/OE.433507