[1] Chang L, Liu S, Bowers J E. Integrated optical frequency comb technologies [J]. Nature Photonics, 2022, 16(2): 95-108. doi:  10.1038/s41566-021-00945-1
[2] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum [J]. Science, 2020, 369(6501): eaay3676. doi:  10.1126/science.aay3676
[3] Papp S B, Beha K, Del’Haye P, et al. Microresonator frequency comb optical clock [J]. Optica, 2014, 1(1): 10-14. doi:  10.1364/OPTICA.1.000010
[4] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics [J]. Nature, 2018, 557(7703): 81-85. doi:  10.1038/s41586-018-0065-7
[5] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy [J]. Optica, 2016, 3(4): 414-426. doi:  10.1364/OPTICA.3.000414
[6] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb [J]. Nature, 2020, 581(7807): 164-170. doi:  10.1038/s41586-020-2239-3
[7] Geng Y, Zhou H, Han X, et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs [J]. Nature Communications, 2022, 13(1): 1-8. doi:  10.1038/s41467-021-27699-2
[8] Chou C W, Collopy A L, Kurz C, et al. Frequency-comb spectroscopy on pure quantum states of a single molecular ion [J]. Science, 2020, 367(6485): 1458-1461. doi:  10.1126/science.aba3628
[9] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science, 2018, 361(6402): eaan8083. doi:  10.1126/science.aan8083
[10] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs [J]. Nature Photonics, 2019, 13(3): 158-169. doi:  10.1038/s41566-019-0358-x
[11] Wang W, Wang L, Zhang W. Advances in soliton microcomb generation [J]. Advanced Photonics, 2020, 2(3): 034001.
[12] Chen Haojing, Xiao Yunfeng. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited) [J]. Infrared and Laser Engineering, 2021, 50(11): 20210560. (in Chinese)
[13] Jung H, Yu S P, Carlson D R, et al. Tantala Kerr nonlinear integrated photonics [J]. Optica, 2021, 8(6): 811-817. doi:  10.1364/OPTICA.411968
[14] Chang L, Xie W, Shu H, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators [J]. Nature Communications, 2020, 11(1): 1331. doi:  10.1038/s41467-020-15005-5
[15] Liu J, Huang G, Wang R N, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits [J]. Nature Communications, 2021, 12(1): 2236. doi:  10.1038/s41467-021-21973-z
[16] Liu X, Gong Z, Bruch A W, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing [J]. Nature Communications, 2021, 12(1): 5428. doi:  10.1038/s41467-021-25751-9
[17] Griffith A G, Lau R K, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation [J]. Nature Communications, 2015, 6(1): 6299. doi:  10.1038/ncomms7299
[18] Yang K Y, Oh D Y, Lee S H, et al. Bridging ultrahigh-Q devices and photonic circuits [J]. Nature Photonics, 2018, 12(5): 297-302. doi:  10.1038/s41566-018-0132-5
[19] He Y, Yang Q F, Ling J, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb [J]. Optica, 2019, 6(9): 1138-1144. doi:  10.1364/OPTICA.6.001138
[20] Zheng Y, Sun C, Xiong B, et al. Integrated gallium nitride nonlinear photonics [J]. Laser & Photonics Reviews, 2021, 15(12): 2100071.
[21] Guidry M A, Lukin D M, Yang K Y, et al. Quantum optics of soliton microcombs [J]. Nature Photonics, 2022, 16(1): 52-58. doi:  10.1038/s41566-021-00901-z
[22] Grassani D, Tagkoudi E, Guo H, et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum [J]. Nature Communications, 2019, 10(1): 1553. doi:  10.1038/s41467-019-09590-3
[23] Bao C, Yuan Z, Wu L, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy [J]. Nature Communications, 2021, 12(1): 6573. doi:  10.1038/s41467-021-26958-6
[24] Wang C, Fang Z, Yi A, et al. High-Q microresonators on 4 H-silicon-carbide-on-insulator platform for nonlinear photonics [J]. Light: Science & Applications, 2021, 10(1): 1-11.
[25] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics [J]. Nature Photonics, 2011, 5(3): 141-148. doi:  10.1038/nphoton.2011.309
[26] Yu Y, Gai X, Ma P, et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide [J]. Optics Letters, 2016, 41(5): 958-961. doi:  10.1364/OL.41.000958
[27] Ahmad R, Rochette M. All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 299-304. doi:  10.1109/JSTQE.2014.2298458
[28] Morrison B, Casas-Bedoya A, Ren G, et al. Compact Brillouin devices through hybrid integration on silicon [J]. Optica, 2017, 4(8): 847-854. doi:  10.1364/OPTICA.4.000847
[29] Zhang B, Zeng P, Yang Z, et al. On-chip chalcogenide microresonators with low-threshold parametric oscillation [J]. Photonics Research, 2021, 9(7): 1272-1279. doi:  10.1364/PRJ.422435
[30] Kim D G, Han S, Hwang J, et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor [J]. Nature Communications, 2020, 11(1): 5933. doi:  10.1038/s41467-020-19799-2
[31] Jiang W C, Li K, Gai X, et al. Ultra-low-power four-wave mixing wavelength conversion in high-Q chalcogenide microring resonators [J]. Optics Letters, 2021, 46(12): 2912-2915. doi:  10.1364/OL.418372
[32] Yang, Z, Zhang R, Wang Z, et al. High-Q, submicron-confined chalcogenide microring resonators [J]. Optics Express, 2021, 29(21): 33225-33233. doi:  10.1364/OE.434808
[33] Du Q, Huang Y, Li J, et al. Low-loss photonic device in Ge–Sb–S chalcogenide glass [J]. Optics Letters, 2016, 41(13): 3090-3093. doi:  10.1364/OL.41.003090
[34] Xia D, Yang Z, Zeng P, et al. Soliton Microcombs in Integrated Chalcogenide Microresonators [J]. arXiv, 2022: 2202.05992.
[35] Song J, Guo X, Peng W, et al. Stimulated Brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides [J]. Journal of Lightwave Technology, 2021, 39(15): 5048-5053. doi:  10.1109/JLT.2021.3078722
[36] Shang H, Sun D, Zhang M, et al. On-chip detector based on supercontinuum generation in chalcogenide waveguide [J]. Journal of Lightwave Technology, 2021, 39(12): 3890-3895. doi:  10.1109/JLT.2020.3043022
[37] Xia D, Huang Y F, Zhang B, et al. Engineered Raman lasing in photonic integrated chalcogenide microresonators [J]. Laser & Photonics Reviews, 2022, 16(1): 2100443.
[38] Xia D, Zeng P, Yang Z, et al. Kerr frequency comb generation in photonic integrated Ge-As-S chalcogenide microresonators [C]//CLEO: Science and Innovations, 2020: SW4J. 2.
[39] Xia D, Yang Z, Zeng P, et al. Integrated Ge-Sb-S chalcogenide microresonator on chip for nonlinear photonics [C]//Conference on Lasers and Electro-Optics/Pacific Rim, 2020: C3C_1.
[40] Xue X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators [J]. Nature Photonics, 2015, 9(9): 594-600. doi:  10.1038/nphoton.2015.137
[41] Xue X, Xuan Y, Wang P H, et al. Normal-dispersion microcombs enabled by controllable mode interactions [J]. Laser & Photonics Reviews, 2015, 9(4): L23-L28.
[42] Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator [J]. Nature Communications, 2021, 12(1): 1-8. doi:  10.1038/s41467-020-20314-w
[43] Bai Y, Zhang M, Shi Q, et al. Brillouin-Kerr soliton frequency combs in an optical microresonator [J]. Physical Review Letters, 2021, 126(6): 063901. doi:  10.1103/PhysRevLett.126.063901