[1] Liu Weibao, Zheng Wanguo, Zhu Qihua, et al. The system integration and exploration of SG-III high power lasers facility [J]. National Defense Science & Technology, 2014, 34(12): 30-36. (in Chinese)
[2] Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility [J]. High Power Laser and Particle Beams, 2020, 32(1): 011003. (in Chinese) doi:  10.11884/HPLPB202032.190469
[3] Di Nicola J M G, Yang S T, Bond T C, et al. The national ignition facility laser performance status[C]//Proc of SPIE, 2021, 11666: 1166604.
[4] Zuegel J D, Bahk S W, Bromage J, et al. Novel laser and diagnostic technologies for the OMEGA EP high-energy petawatt laser [J]. The Review of Laser Engineering, 2009, 37(6): 437-442.
[5] Bromage J, Bahk S W, Irwin D, et al. A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers [J]. Optics Express, 2008, 16(21): 16561-16572. doi:  10.1364/OE.16.016561
[6] Kruschwitz B E, Bahk S W, Bromage J, et al. Accurate target-plane focal-spot characterization in high-energy laser systems using phase retrieval [J]. Optics Express, 2012, 20(19): 20874-20883. doi:  10.1364/OE.20.020874
[7] Zhang H D, Fiorito R B, Shkvarunets A G, et al. Beam halo imaging with a digital optical mask [J]. Phys Rev ST Acce Beams, 2012, 15(7): 072803. doi:  10.1103/PhysRevSTAB.15.072803
[8] Cheng Juan, Qin Xingwu, Chen Bo, et al. Experimental investigation on focal spot measurement by schlieren method [J]. High Power Laser and Particle Beams, 2006, 18(4): 612-614. (in Chinese)
[9] He Yuanxing, Li Xinyang. Far-field focal spot measurement method based on orthogonal wedges [J]. High Power Laser and Particle Beams, 2012, 24(11): 2543-2548. (in Chinese) doi:  10.3788/HPLPB20122411.2543
[10] 李铭. 基于光场相机的高功率激光远场焦斑测量[C]. 中国科学院大学. 2018. 北京.

Li Ming. Far-field focal spot measurement based on plenoptic camera[D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)
[11] Wang Zhengzhou, Wang Wei, Xia Yanwen. Mathematical model for the measurement of high dynamic range laser focal spot [J]. Acta Photonica Sinica, 2014, 43(10): 1010002. (in Chinese) doi:  10.3788/gzxb20144310.1010002
[12] Wang Zhengzhou, Xia Yanwen, Li Hongguang, et al. Far-field focal spot measurement of 10 kJ-level laser facility [J]. Acta Photonica Sinica, 2016, 45(8): 0812001. (in Chinese) doi:  10.3788/gzxb20164508.0812001
[13] Wang Zhengzhou, Hu Bingliang, Yin Qinye. An improved schlieren method for measurement and automatic reconstruction of the far-field focal spot [J]. PLoS One, 2017, 12(2): e0171415. doi:  10.1371/journal.pone.0171415
[14] Wang Zhengzhou, Wang Li, Tan Meng, et al. Research on CNN denoising algorithm based on an improved mathematical model for the measurement of far-field focal spot [J]. Acta Photonica Sinica, 2020, 49(12): 1212001. (in Chinese) doi:  10.3788/gzxb20204912.1212001
[15] Wang Zhengzhou, Wang Li, Wei Jitong, et al. Measurement for far-field focal spot of high power laser based on the diffraction inversion of sidelobe beam [J]. Optics and Precision Engineering, 2022, 30(2): 380-402. (in Chinese) doi:  10.37188/OPE.20223004.0380
[16] Li Danmeng, Jin Weiqi, Li Li, et al. Numerical simulation and analysis of free-surface wake generated by moving submerged target [J]. Infrared and Laser Engineering, 2018, 11(47): 1126004. (in Chinese) doi:  10.3788/IRLA201847.1126004
[17] Wang Yanru, Wang Jianzhong, Ran Zhenghui, et al. Analysis of effects on the beam quality β factor of high power laser [J]. Chinese Optics, 2021, 3(14): 353-359. (in Chinese)
[18] Zhang Chaoxiang, Chen Jing, Zheng Chenhui. Adaptive time window step counting algorithm based on peak detection [J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(4): 195-203. (in Chinese)
[19] Bi Jingxue, Wang Yunjia, Cao Hongji, et al. A step counting algorithm for smartphone with peak-valley detection [J]. Journal of Chinese Inertial Technology, 2020, 28(6): 287-292. (in Chinese) doi:  10.13695/j.cnki.12-1222/o3.2020.03.002