[1] Waynant R W, Ilev I K, Gannot I. Mid-infrared laser applications in medicine and biology [J]. Phil Trans R Soc Lond A, 2001, 359: 635-644. doi:  10.1098/rsta.2000.0747
[2] Griffith D W T, Pohler D, Schmitt D, et al. Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy [J]. Atmospheric Measurement Techniques, 2018, 11: 1549-1563. doi:  10.5194/amt-11-1549-2018
[3] Downey G. Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics [J]. TrAC Trends in Analytical Chemistry, 1998, 17(7): 418-424.
[4] Seddon A B. Mid-infrared photonics for early cancer diagnosis[C]//16th International Conference on Transparent Optical Networks (ICTON), Graz, 2014: 1-4
[5] 钟鸣, 任刚. 3~5 μm中红外激光对抗武器系统[J]. 四川兵工学报, 2007, 28(1): 3-6.

Zhong Ming, Ren Gang. 3~5 μm mid-infrared laser countermeasure weapon system [J]. Sichuan Ordnance Journal, 2007, 28(1): 3-6. (in Chinese)
[6] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs [J]. Nature Photonics, 2012, 6: 440-449. doi:  10.1038/nphoton.2012.142
[7] Carr G L. Resolution limits for infrared microspectroscopy explored with synchrotron radiation [J]. Rev Sci Instrum, 2001, 72: 1613. doi:  10.1063/1.1347965
[8] Brehm M, Schliesser A, Keilmann F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared [J]. Opt Express, 2006, 14: 11222-11233. doi:  10.1364/OE.14.011222
[9] Huth F, Govyadinov A, Amarie S, et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution [J]. Nano Lett, 2012, 12: 3973-3978. doi:  10.1021/nl301159v
[10] Lu F, Jin M, Belkin M A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection [J]. Nature Photon, 2014, 8: 307-312. doi:  10.1038/nphoton.2013.373
[11] Griffiths P R, de Haseth J A. Fourier tranform infrared spectrometry[M]. New York: John Wiley & Sons Inc, 2007.
[12] Petibois C, Deleris G, Piccinini M, et al. A bright future for synchrotron imaging [J]. Nat Photonics, 2009, 3: 179. doi:  10.1038/nphoton.2009.31
[13] Ma J, Qin Z, Xie G, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region [J]. Applied Physics Reviews, 2019, 6(2): 021317. doi:  10.1063/1.5037274
[14] Luke K, Okawachi Y, Lamont M R E, et al. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator [J]. Opt Lett, 2015, 40: 4823-4826. doi:  10.1364/OL.40.004823
[15] Savchenkov A A, Ilchenko V S, Teodoro F D, et al. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers [J]. Opt Lett, 2015, 40: 3468-3471. doi:  10.1364/OL.40.003468
[16] Petersen C R, Møller U, Kubat I, et al. Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre [J]. Nat Photonics, 2014, 8: 830. doi:  10.1038/nphoton.2014.213
[17] Pupeza I, Sánchez D, Zhang J, et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate [J]. Nature Photon, 2015, 9: 721-724. doi:  10.1038/nphoton.2015.179
[18] J. Zhang, K. Fritsch, Q. Wang, et al. Intra-pulse difference-frequency generation of mid-infrared (2.7-20 μm) by random quasi-phase-matching [J]. Optics Letters, 2019, 44: 2986. doi:  10.1364/OL.44.002986
[19] Chen B, Wittmann E, Morimoto Y, et al. Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS2 [J]. Opt Express, 2019, 27: 21306-21318. doi:  10.1364/OE.27.021306
[20] Zhang Z, Gardiner T, Reid D T. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator [J]. Opt Lett, 2013, 38: 3148-3150. doi:  10.1364/OL.38.003148
[21] Maidment L, Zhang Z, Howle C R, et al. Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy [J]. Opt Lett, 2016, 41: 2266-2269. doi:  10.1364/OL.41.002266
[22] Maidment L, Schunemann P G, Reid D T. White powder identification using broadband coherent light in the molecular fingerprint region [J]. Opt Express, 2018, 26: 25364-25369. doi:  10.1364/OE.26.025364
[23] Ebrahim-Zadeh M, Dunn M H. Optical Parametric Oscillators, Handbook of Optics[M]. New York, USA: McGraw-Hill, 2000.
[24] Cheung E C, Liu J M. Theory of a synchronously pumped optical parametric oscillator in steady-state operation [J]. J Opt Soc Am B, 1990, 7: 1385-1401. doi:  10.1364/JOSAB.7.001385
[25] Kumar S C, Esteban-Martin A, Ideguchi T, et al. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20 fs Ti:sapphire laser [J]. Laser & Photonics Reviews, 2014, 8: L86-L91.
[26] Balskus K, Zhang Z, McCracken R A, et al. Mid-infrared 333 MHz frequency comb continuously tunable from 1.95 to 4.0 μm [J]. Opt Lett, 2015, 40: 4178-4181. doi:  10.1364/OL.40.004178
[27] Maidment L, Schunemann P G, Reid D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator [J]. Opt Lett, 2016, 41: 4261-4264. doi:  10.1364/OL.41.004261
[28] Shirakawa A, Kobayashi T. Noncollinearly phase-matched femtosecond optical parametric amplification with a 2 000 cm-1 bandwidth [J]. Appl Phys Lett, 1998, 72: 147. doi:  10.1063/1.120670
[29] Cerullo G, Silvestri S D. Ultrafast optical parametric amplifiers [J]. Review of Scientific Instruments, 2003, 74: 1. doi:  10.1063/1.1523642
[30] Charbonneau-Lefort M, Afeyan B, Fejer M M. Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas [J]. J Opt Soc Am B, 2008, 25: 463-480.
[31] Robert W Boyd. Nonlinear Optics[M]. 2nd ed. Rochester, New York: Elsevier, 2008.
[32] Govind P Agrawal, Nonlinear Fiber Optics[M]. fifth ed. Rochester, New York: Elsevier, 2012.
[33] Ilday F Ö, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser [J]. Phys Rev Lett, 2004, 92: 213902. doi:  10.1103/PhysRevLett.92.213902
[34] Proctor B, Westwig E, Wise F. Characterization of a Kerr-lens mode-locked Ti: sapphire laser with positive group-velocity dispersion [J]. Opt Lett, 1993, 18: 1654-1656. doi:  10.1364/OL.18.001654
[35] Fernandez A, Fuji T, Poppe A, et al. Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification [J]. Opt Lett, 2004, 29: 1366-1368. doi:  10.1364/OL.29.001366
[36] Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Opt Commun, 1985, 56: 219-221. doi:  10.1016/0030-4018(85)90120-8
[37] Liu P, Zhang Z. Chirped-pulse optical parametric oscillators [J]. Optics Letters, 2018, 43(19): 4735-4738. doi:  10.1364/OL.43.004735
[38] Liu P, Zhang Z. Generation of mid-infrared emission with a 3.1-4.5 μm instantaneous bandwidth from a chirped-pulse optical parametric oscillator [J]. Optics Letters, 2019, 44(16): 3988-3991. doi:  10.1364/OL.44.003988
[39] Liu P, Heng J, Zhang Z. Chirped-pulse generation from optical parametric oscillators with an aperiodic quasi-phase-matching crystal [J]. Optics Letters, 2020, 45(9): 2568-2571. doi:  10.1364/OL.391175
[40] Pelouch W S, Powers P E, Tang C L. Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator [J]. Opt Lett, 1992, 17: 1070-1072. doi:  10.1364/OL.17.001070
[41] Fu Q, Mak G, van Driel H M. High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser [J]. Opt Lett, 1992, 17: 1006-1008. doi:  10.1364/OL.17.001006
[42] P. Jian, W. E. Torruellas, M. Haelterman, et al. Solitons of singly resonant optical parametric oscillators [J]. Opt. Lett., 1999, 24: 400-402. doi:  10.1364/OL.24.000400
[43] Caumes J P, Videau L, Rouyer C, et al. Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc crystals [J]. Phys Rev Lett, 2002, 89: 047401. doi:  10.1103/PhysRevLett.89.047401
[44] Prawiharjo J, Hung H S S, Hanna D C, et al. Theoretical and numerical investigations of parametric transfer via difference-frequency generation for indirect mid-infrared pulse shaping [J]. J Opt Soc Am B, 2007, 24: 895-905. doi:  10.1364/JOSAB.24.000895
[45] Arbore M A, Marco O, Fejer M M. Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings [J]. Opt Lett, 1997, 22: 865-867. doi:  10.1364/OL.22.000865
[46] Arbore M A, Galvanauskas A, Harter D, et al. Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate [J]. Opt Lett, 1997, 22: 1341-1343. doi:  10.1364/OL.22.001341
[47] Beddard T, Ebrahimzadeh M, Reid T D, et al. Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on aperiodically poled lithium niobate [J]. Opt Lett, 2000, 25: 1052-1054. doi:  10.1364/OL.25.001052
[48] The HITRAN Database. Update to the line-mixing package for CO2. [2020-06-30].https://hitran.org/.