[1] Gbur G J. Singular Optics[M]. US: CRC Press Taylor & Francis Group, 2017.
[2] Yao M, Padgett M J. Orbital angular momentum: origins, behavior and applications [J]. Adv Opt Photon, 2011, 3: 161. doi:  10.1364/AOP.3.000161
[3] Nye J F, Berry M V. Dislocations in wave trains [J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1974, 336(1605): 165-190.
[4] Coullet P, Gil G, Rocca F. Optical vortices [J]. Opt Commun, 1989, 73(5): 403-408. doi:  10.1016/0030-4018(89)90180-6
[5] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Phys Rev A, 1992, 45: 8185. doi:  10.1103/PhysRevA.45.8185
[6] Beijersbergen M W, Allen L, Vanderveen H, et al. Astigmatic laser mode converters and transfer of orbital angular-momentum [J]. Opt Commun, 1993, 96(1-3): 123. doi:  10.1016/0030-4018(93)90535-D
[7] Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon [J]. Opt Commun, 2000, 177(1-6): 297-301.
[8] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator [J]. Opt Lett, 2013, 38(4): 534-536. doi:  10.1364/OL.38.000534
[9] Yang Y J, Dong Y, Zhao C L, et al. Generation and propagation of an anomalous vortex beam [J]. Opt Lett, 2013, 38(24): 5418-5421. doi:  10.1364/OL.38.005418
[10] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548. doi:  10.1126/science.1237861
[11] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nat Photonics, 2012, 6(7): 488-496. doi:  10.1038/nphoton.2012.138
[12] Zhang H, Li X Z, Ma H X, et al. Grafted optical vortex with controllable orbital angular momentum distribution [J]. Optics Express, 2019, 27(16): 22930. doi:  10.1364/OE.27.022930
[13] Grier D G. A Revolution in optical manipulation [J]. Nature, 2003, 424(6950): 810-816. doi:  10.1038/nature01935
[14] Friese M E J, Nieminen T A, Heckenberg N R, et al. Optical alignment and spinning of laser-trapped microscopic particles [J]. Nature, 1998, 394(6691): 348-350. doi:  10.1038/28566
[15] Yang Y J, Zhao Q, Liu L L, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates [J]. Phys Rev Appl, 2019, 12: 064007. doi:  10.1103/PhysRevApplied.12.064007
[16] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844): 313-316. doi:  10.1038/35085529
[17] Stav T, Faerman A, Maguid E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials [J]. Science, 2018, 361(6407): 1101-1103. doi:  10.1126/science.aat9042
[18] Lavery M, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum [J]. Science, 2013, 341(6145): 537-540. doi:  10.1126/science.1239936
[19] Gauthier D, Ribic P R, Adhikary G, et al. Tunable orbital angular momentum in high-harmonic generation [J]. Nat Commun, 2017, 8: 14971. doi:  10.1038/ncomms14971
[20] Kong F, Zhang C, Bouchard F, et al. Controlling the orbital angular momentum of high harmonic vortices [J]. Nat Commun, 2017, 8: 14970. doi:  10.1038/ncomms14970
[21] Guo Zhongyi, Gong Chaofan, Liu Hongjun, et al. Research advances of orbital angular momentum based optical communication technology [J]. Opto-Electronic Engineering, 2020, 47(3): 90-123. (in Chinese)
[22] Wang T, Wang F, Shi F, et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler [J]. J Lightwave Technol, 2017, 35(11): 2161-2166. doi:  10.1109/JLT.2017.2676241
[23] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate [J]. Opt Commun, 1994, 112(5-6): 321-327. doi:  10.1016/0030-4018(94)90638-6
[24] Bazhenov V, Vasnetsov M, Soskin M. Laser beams with screw dislocations in their wavefronts [J]. Jetp Letter, 1990, 52: 429-431.
[25] Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM [J]. Opt Express, 2017, 25: 25697-25706. doi:  10.1364/OE.25.025697
[26] Padgett M J, Allen L. Orbital angular momentum exchange in cylindrical-lens mode converters [J]. J Opt B: Quantum Semiclass Opt, 2002, 4(2): S17-S19.
[27] Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters [J]. Science, 2012, 338(6105): 363-366. doi:  10.1126/science.1226528
[28] Marqués R, Martel J, Mesa F, et al. A new 2D isotropic left-handed metamaterial design: Theory and experiment [J]. Microw Opt Techn Let, 2002, 35(5): 405-408. doi:  10.1002/mop.10620
[29] Holloway C L, Kuester E F, Baker-Jarvis J, et al. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix [J]. IEEE T Antenn and Propag, 2003, 51(10): 2596-2603. doi:  10.1109/TAP.2003.817563
[30] Sihvola A. Metamaterials in electromagnetics [J]. Metamaterials, 2007, 1(1): 2-11. doi:  10.1016/j.metmat.2007.02.003
[31] Shamonina E, Solymar L. Metamaterials: How the subject started [J]. Metamaterials, 2007, 1(1): 12-18. doi:  10.1016/j.metmat.2007.02.001
[32] Lapine M, Tretyakov S. Contemporary notes on metamaterials [J]. Iet Microw Antenna P, 2007, 1(1): 3-11. doi:  10.1049/iet-map:20050307
[33] Holloway C L, Kuester E F, O’Hara A J, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials [J]. IEEE Antenn and Propag M, 2012, 54(2): 10-35. doi:  10.1109/MAP.2012.6230714
[34] Chen H T, Taylor A J, Yu N. A review of metasurfaces: Physics and applications [J]. Rep Prog Phys, 2016, 79(7): 076401. doi:  10.1088/0034-4885/79/7/076401
[35] Yu N F, Patrice G, Kats M, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333. doi:  10.1126/science.1210713
[36] Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas [J]. Science, 2012, 335(6067): 427. doi:  10.1126/science.1214686
[37] Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves [J]. Nat Materials, 2012, 11(5): 426-431. doi:  10.1038/nmat3292
[38] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities [J]. Nano Lett, 2012, 12(3): 1702-1706. doi:  10.1021/nl300204s
[39] Cheng H, Liu Z, Chen S, et al. Emergent functionality and controllability in few-layer metasurfaces [J]. Adv Mater, 2015, 27(36): 5410-5421. doi:  10.1002/adma.201501506
[40] Novotny L, Hulst N V. Antennas for light [J]. Nat Photon, 2011, 5(2): 83-90. doi:  10.1038/nphoton.2010.237
[41] Bharadwaj P, Deutsch B, Novotny L. Optical Antennas [J]. Adv Opt Photon, 2009, 1(3): 438-483. doi:  10.1364/AOP.1.000438
[42] Lin J, Mueller J P B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons [J]. Science, 2013, 340(6130): 331-334. doi:  10.1126/science.1233746
[43] Walther B, Helgert C, Rockstuhl C, et al. Spatial and spectral light shaping with metamaterials [J]. Adv Mater, 2012, 24(47): 6300-6304. doi:  10.1002/adma.201202540
[44] Wang X W, Nie Z Q, Liang Y, et al. Recent advances on optical vortex generation [J]. Nanophotonics, 2018, 7(9): 1533-1556. doi:  10.1515/nanoph-2018-0072
[45] Chen S Q, Li Z, Zhang Y B, et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics [J]. Adv Optical Mater, 2018, 6: 1800104. doi:  10.1002/adom.201800104
[46] Arbabi A, Faraon A. Fundamental limits of ultrathin metasurfaces [J]. A Sci Rep, 2017, 7: 43722. doi:  10.1038/srep43722
[47] Sun J, Wang X, Xu T, et al. Spinning light on the nanoscale [J]. Nano Lett, 2014, 14: 2726. doi:  10.1021/nl500658n
[48] Kim M, Wong A M H, Eleftheriades G V. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients [J]. Phys Rev X, 2014, 4: 41042.
[49] Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen [J]. Phys Rev Lett, 2013, 110: 203903. doi:  10.1103/PhysRevLett.110.203903
[50] Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surface [J]. Adv Opt Mater, 2015, 3: 813. doi:  10.1002/adom.201400584
[51] Zhao Q, Zhou J, Zhang F, et al. Mie resonance-based dielectric metamaterials [J]. Mater Today, 2009, 12: 60. doi:  10.1016/S1369-7021(09)70318-9
[52] Zhou L, Withayachumnankul W, Shah C M, et al. Dielectric resonator nanoantennas at visible frequencies [J]. Opt Express, 2013, 21: 1344. doi:  10.1364/OE.21.001344
[53] Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays [J]. Nat Commun, 2015, 6: 7069. doi:  10.1038/ncomms8069
[54] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasrfaces [J]. Optica, 2017, 4: 139-152. doi:  10.1364/OPTICA.4.000139
[55] Chong K E, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control [J]. Nano Lett, 2015, 15: 5369-5374. doi:  10.1021/acs.nanolett.5b01752
[56] Yang Y J, Zhu X, Zeng J, et al. Anomalous Bessel vortex beam: Modulating orbital angular momentum with propagation [J]. Nanophotonics, 2018, 7: 677-682. doi:  10.1515/nanoph-2017-0078
[57] Wang H, Liu L, Zhou C, et al. Vortex beam generation with variable topological charge based on a spiral slit [J]. Nanophotonics, 2019, 8(2): 317-324. doi:  10.1515/nanoph-2018-0214
[58] Zhang J R, Guo Z Y, Li R Z, et al. Circular polarization analyzer based on the combined coaxial Archimedes’spiral structure [J]. Plasmonics, 2015, 10(6): 1255-1261. doi:  10.1007/s11468-015-9917-2
[59] Tomoki O, Shintaro M. Study of surface plasmon chirality induced by Archimedes’ spiral grooves [J]. Opt Express, 2006, 14(13): 6285-6290. doi:  10.1364/OE.14.006285
[60] Onoda M, Murakami S, Nagaosa N. Hall effect of light [J]. Phys Rev Lett, 2004, 93(8): 083901. doi:  10.1103/PhysRevLett.93.083901
[61] Li G X, Kang M, Chen S M, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light [J]. Nano Lett, 2013, 13(9): 4148-4151. doi:  10.1021/nl401734r
[62] Moon S W, Jeong H D, Lee S, et al. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation [J]. Opt Express, 2019, 27(14): 19119-19129. doi:  10.1364/OE.27.019119
[63] Chen C F, Ku C T, Tai Y H, et al. Creating optical near-field orbital angular momentum in a gold metasurface [J]. Nano Lett, 2015, 15: 2746-2750. doi:  10.1021/acs.nanolett.5b00601
[64] Tang B, Zhang B, Ding J. Generating a plasmonic vortex field with arbitrary topological charges and positions by meta-nanoslits [J]. Appl Optics, 2019, 58(4): 833-840. doi:  10.1364/AO.58.000833
[65] Tan Q L, Guo Q H, Liu H C, et al. Controlling plasmonic orbital angular momentum by combining geometric and dynamic phase [J]. Nanoscale, 2017, 9(15): 4944-4949. doi:  10.1039/C7NR00124J
[66] Kim H, Park J, Cho S W, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens [J]. Nano Letters, 2010, 10(2): 529-536. doi:  10.1021/nl903380j
[67] Lee S, Kim S, Kwon H, et al. Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits [J]. IEEE Photonic Tech Lett, 2015, 27(7): 705-708. doi:  10.1109/LPT.2015.2390217
[68] Pancharatnam S. Generalized theory of interference and its applications [J]. Indian Acad Sci, 1956, 44(6): 398-417. doi:  10.1007/BF03046095
[69] Berry M V. Quantal phase factors accompanying adiabatic changes [J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1984, 392(1802): 45-57.
[70] Teng S Y, Zhang Q, Wang H, et al. Conversion between polarization states based on a metasurface [J]. Photonics Res, 2019, 7(3): 246. doi:  10.1364/PRJ.7.000246
[71] Karimi E, Schulz S A, Leon I D, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface [J]. Light Sci Appl, 2014, 3: e167. doi:  10.1038/lsa.2014.48
[72] Zhang Y C, Liu W W, Gao J, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces [J]. Adv Optical Mater, 2018, 6(4): 1701228. doi:  10.1002/adom.201701228
[73] Li Z W, Hao J M, Huang L R, et al. Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes [J]. Opt Express, 2016, 24(8): 8788-8796. doi:  10.1364/OE.24.008788
[74] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light [J]. Science, 2017, 358: 896-901.
[75] Guo Y H, Pu M B, Zhao Z Y. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation [J]. ACS Photonics, 2016, 3: 2022-2099. doi:  10.1021/acsphotonics.6b00564
[76] Zhou J, Liu Y, Ke Y, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phase [J]. Opt Lett, 2015, 40: 3193. doi:  10.1364/OL.40.003193
[77] Fan Q, Wang D, Huo P, et al. Autofocusing Airy beams generated by all-dielectric metasurface for visible light [J]. Opt Express, 2017, 25: 9285. doi:  10.1364/OE.25.009285
[78] Chen S, Cai Y, Li G, et al. Geometric metasurface fork gratings for vortex-beam generation and manipulation [J]. Laser Photon Rev, 2016, 10: 322. doi:  10.1002/lpor.201500259
[79] Zhang L, Liu S, Li L, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces [J]. ACS Appl Mater Interfaces, 2017, 9: 36447. doi:  10.1021/acsami.7b12468
[80] Yue F, Wen D, Zhang C, et al. Multichannel polarization controllable superpositions of orbital angular momentum states [J]. Adv Mater, 2017, 29: 1603838. doi:  10.1002/adma.201603838
[81] Bliokh K Y. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect [J]. Phys Rev Lett, 2006, 97: 43901. doi:  10.1103/PhysRevLett.97.043901
[82] Xiao S, Wang J, Liu F, et al. Spin-dependent optics with metasurfaces [J]. Nanophotonics, 2017, 6: 215. doi:  10.1515/nanoph-2016-0121
[83] Ling X, Zhou X, Huang K, et al. Recent advances in the spin Hall effect of light [J]. Rep Prog Phys, 2017, 80: 664011.
[84] Shitrit N, Yulevich I, Maguid E, et al. Spin-optical metamaterial route to spin-controlled photonics [J]. Science, 2013, 340: 724. doi:  10.1126/science.1234892
[85] Ling X, Zhou X, Yi X, et al. Giant photonics spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence [J]. Light Sci Appl, 2015, 4: e290. doi:  10.1038/lsa.2015.63
[86] Gabor D. A new microscopic principle [J]. Nature, 1948, 161: 117. doi:  10.1038/161117a0
[87] Cathey W. Phase holograms, phase-only holograms, and kinoforms [J]. Appl Opt, 1970, 9: 1478. doi:  10.1364/AO.9.001478
[88] Huang K, Gao H, Cao G, et al. Design of diffractive phase element for modulating the electric field at the out-of-focus plane in a lens system [J]. Appl Opt, 2012, 51: 5149. doi:  10.1364/AO.51.005149
[89] Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface [J]. Nat Commun, 2013, 4: 2808. doi:  10.1038/ncomms3808
[90] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress [J]. Rep Prog Phys, 2015, 78: 24401. doi:  10.1088/0034-4885/78/2/024401
[91] Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light [J]. Nat Commun, 2013, 4: 2807. doi:  10.1038/ncomms3807
[92] Huang K, Liu H, Restuccia S, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum [J]. Light Sci Appl, 2018, 7: 17156. doi:  10.1038/lsa.2017.156
[93] Min C, Liu J, Lei T, et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram [J]. Laser Photon Rev, 2016, 10: 978. doi:  10.1002/lpor.201600101
[94] Zhan A, Colburn S, Trivedi R, et al. Low-contrast dielectric metasurface optics [J]. ACS Photonics, 2016, 3: 209. doi:  10.1021/acsphotonics.5b00660
[95] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams [J]. Adv Opt Photonics, 2015, 7: 66-106. doi:  10.1364/AOP.7.000066
[96] Jin J J, Pu M B, Wang Y Q, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial [J]. Adv Mater Technol, 2017, 2: 1600201. doi:  10.1002/admt.201600201
[97] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings [J]. Opt Lett, 2010, 35: 3495. doi:  10.1364/OL.35.003495
[98] Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings [J]. Light Sci Appl, 2015, 4: e257. doi:  10.1038/lsa.2015.30
[99] Chen S Q, Liu W W, Li Z C, et al. Metasurface empowered optical multiplexing and multifunction [J]. Adv Mater, 2019, 32(3): 1805912.
[100] Liu W W, Li Z C, Cheng H, et al. Momentum analysis for metasurfaces [J]. Phys Rev Appl, 2017, 8: 014012. doi:  10.1103/PhysRevApplied.8.014012
[101] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array [J]. Science, 2016, 352(6290): 1202.
[102] Mehmood M Q, Mei S, Hussain S, et al. Visible‐frequency metasurface for structuring and spatially multiplexing optical vortices [J]. Adv Mater, 2016, 28: 2533. doi:  10.1002/adma.201504532
[103] Maguid E, Yulevich I, Yannai M, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces [J]. Light Sci Appl, 2017, 6: e17027. doi:  10.1038/lsa.2017.27
[104] Zhang C, Yue F, Wen D, et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams [J]. ACS Photonics, 2017, 4: 1906. doi:  10.1021/acsphotonics.7b00587
[105] Lin D, Holsteen A L, Maguid E, et al. Photonic multitasking interleaved Si nanoantenna phased array [J]. Nano Lett, 2016, 16: 7671. doi:  10.1021/acs.nanolett.6b03505
[106] Zeng J, Li L, Yang X, et al. Generating and separating twisted light by gradient–rotation split-ring antenna meatasurfaces [J]. Nano Lett, 2016, 16: 3101. doi:  10.1021/acs.nanolett.6b00360
[107] Huang L L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces [J]. ACS Photonics, 2017, 4: 338-346. doi:  10.1021/acsphotonics.6b00808