[1] Lu P, Buric M P, Byerly K, et al. Real-time monitoring of temperature rises of energized transformer cores with distributed optical fiber sensors [J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1588-1598. doi:  10.1109/TPWRD.2019.2912866
[2] Von Moll A, Behbahani A R, Fralick G C, et al. A review of exhaust gas temperature sensing techniques for modern turbine engine controls [C]//50 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014: 3977.
[3] Fernandez A F, Rodeghiero P, Brichard B, et al. Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures [J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2689-2694. doi:  10.1109/TNS.2005.860736
[4] Lopez-Higuera J M, Cobo L R, Incera A Q, et al. Fiber optic sensors in structural health monitoring [J]. Journal of Lightwave Technology, 2011, 29(4): 587-608. doi:  10.1109/JLT.2011.2106479
[5] Ukil A, Braendle H, Krippner P. Distributed temperature sensing: Review of technology and applications [J]. IEEE Sensors Journal, 2012, 12(5): 885-892. doi:  10.1109/JSEN.2011.2162060
[6] Grosswig S, Graupner A, Hurtig E, et al. Distributed fibre optical temperature sensing technique-a variable tool for monitoring tasks [C]//TEMPMEKO 2001-8th International Symposium on Temperature and Thermal Measurements in Industry and Science, 2001, 1: 9-18.
[7] Sudeep M, Sachin D, Boon K L, et al. Characterization and calibration of Raman based distributed temperature sensing system for 600 C operation [C]//Proceedings of SPIE, 2015, 9491: 94910A.
[8] Toccafondo I, Nannipieri T, Signorini A, et al. Raman distributed temperature sensing at CERN [J]. IEEE Photonics Technology Letters, 2015, 27(20): 2182-2185. doi:  10.1109/LPT.2015.2456029
[9] Yilmaz G, Karlik S E. A distributed optical fiber sensor for temperature detection in power cables [J]. Sensors and Actuators A: Physical, 2006, 125(2): 148-155. doi:  10.1016/j.sna.2005.06.024
[10] Marc N, Bernhard H V, Fabien B, et al. Leakage detection using fiber optics distributed temperature monitoring [C]//Proceedings of SPIE, 2004, 5384: 18-25.
[11] Liu Z, Ferrier G, Bao X, et al. Brillouin scattering based distributed fiber optic temperature sensing for fire detection [C]//Fire Safety Science-Proceedings of the 7th International Symposium, 2003: 221-232.
[12] Dong Y, Zhang H, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair [J]. Appl Opt, 2012, 51(9): 1229-1235. doi:  10.1364/AO.51.001229
[13] Dong Y, Chen L, Bao X. Extending the sensing range of brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs [J]. Journal of Lightwave Technology, 2012, 30(8): 1161-1167. doi:  10.1109/JLT.2011.2170813
[14] Thévenaz L, Fellay A, Scandale W. Brillouin gain spectrum characterization in optical fibres from 1 to 1000 K [C]//16th International Conference on Optical Fiber Sensors, 2003, Paper Tu2-2: 38-41.
[15] Li Y, Zhang F, Yoshino T. Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect [J]. Journal of Lightwave Technology, 2003, 21(7): 1663-1667. doi:  10.1109/JLT.2003.814929
[16] Wang J, Hu D, Dorothy Y W, et al. Fully-distributed fiber-optic high temperature sensing based on stimulated Brillouin scattering [C]//Proceedings of SPIE, 2013, 8722: 87220E.
[17] Bao Y, Chen G. High-temperature measurement with Brillouin optical time domain analysis of an annealed fused-silica single-mode fiber [J]. Opt Lett, 2016, 41(14): 3177-3180. doi:  10.1364/OL.41.003177
[18] Liao C R, Wang D N. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing [J]. Photonic Sensors, 2013, 3(2): 97-101. doi:  10.1007/s13320-012-0060-9
[19] Rose A H. Devitrification in annealed optical fiber [J]. Journal of Lightwave Technology, 1997, 15(5): 808-814. doi:  10.1109/50.580819
[20] Nubling R K, Harrington J A. Optical properties of single-crystal sapphire fibers [J]. Appl Opt, 1997, 36(24): 5934-5940. doi:  10.1364/AO.36.005934
[21] Liu B, Yu Z, Hill C, et al. Sapphire-fiber-based distributed high-temperature sensing system [J]. Opt Lett, 2016, 41(18): 4405-4408. doi:  10.1364/OL.41.004405
[22] Reinsch T, Henninges J. Temperature-dependent characterization of optical fibres for distributed temperature sensing in hot geothermal wells [J]. Measurement Science and Technology, 2010, 21(9): 094022. doi:  10.1088/0957-0233/21/9/094022
[23] Kurkjian C R, Krause J T, Matthewson M J. Strength and fatigue of silica optical fibers [J]. Journal of Lightwave Technology, 1989, 7(9): 1360-1370. doi:  10.1109/50.50715
[24] Pinnow D A, Robertson G D, Wysocki J A. Reductions in static fatigue of silica fibers by hermetic jacketing [J]. Applied Physics Letters, 1979, 34(1): 17-19. doi:  10.1063/1.90581
[25] Laarossi I, Ruiz-Lombera R, Quintela M A, et al. Ultrahigh temperature raman-based distributed optical fiber sensor with gold-coated fiber [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 296-301. doi:  10.1109/JSTQE.2016.2633821
[26] Laarossi I, Quintela-Incera M Á, López-Higuera J M. Comparative experimental study of a high-temperature raman-based distributed optical fiber sensor with different special fibers [J]. Sensors, 2019, 19(3): 574. doi:  10.3390/s19030574
[27] Ruiz-Lombera R, Laarossi I, Rodríguez-Cobo L, et al. Distributed high-temperature optical fiber sensor based on a Brillouin optical time domain analyzer and multimode gold-coated fiber [J]. IEEE Sensors Journal, 2017, 17(8): 2393-2397. doi:  10.1109/JSEN.2017.2668844
[28] Ippen E P, Stolen R H. Stimulated brillouin scattering in optical fibers [J]. Applied Physics Letters, 1972, 21(11): 539-541. doi:  10.1063/1.1654249
[29] Mizuno Y, Nakamura K. Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength [J]. Applied Physics Letters, 2010, 97(2): 021103. doi:  10.1063/1.3463038
[30] Agrawal G P. Nonlinear fiber optics [C]//Nonlinear Science at the Dawn of the 21st Century. Lecture Notes in Physics, 2000, 542: 195-211.
[31] Bao X, Chen L. Recent progress in distributed fiber optic sensors [J]. Sensors, 2012, 12(7): 8601-8639. doi:  10.3390/s120708601
[32] Xu P, Dong Y, Zhou D, et al. 1200 ℃ high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis [J]. Appl Opt, 2016, 55(21): 5471-5478. doi:  10.1364/AO.55.005471
[33] Mohanna Y, Saugrain J M, Rousseau J C, et al. Relaxation of internal stresses in optical fibers [J]. Journal of Lightwave Technology, 1990, 8(12): 1799-1802. doi:  10.1109/50.62873
[34] Li Y, Zhang F, Yoshino T. Wide temperature-range Brillouin and Rayleigh optical-time-domain reflectometry in a dispersion-shifted fiber [J]. Appl Opt, 2003, 42(19): 3772-3775. doi:  10.1364/AO.42.003772
[35] Xu P, Ba D, He W, et al. Distributed Brillouin optical fiber temperature and strain sensing at a high temperature up to 1000 ℃ by using an annealed gold-coated fiber [J]. Opt Express, 2018, 26(23): 29724-29734. doi:  10.1364/OE.26.029724
[36] Xu P, Xu O, Dong X, et al. Investigation of the effect of gold coating of gold-coated fiber on distributed strain measurement by differential pulse pair Brillouin optical-time analysis [J]. Appl Opt, 2019, 58(31): 8376-8382. doi:  10.1364/AO.58.008376
[37] Li W, Bao X, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing [J]. Opt Express, 2008, 16(26): 21616-21625. doi:  10.1364/OE.16.021616