[1] Zheng Li, Wang Huibo, Tian Wenlong, et al. LD-pumped high-repetition-rate all-solid- state femtosecond lasers (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201069. (in Chinese)
[2] Zhang Guodong, Cheng Guanghua, Zhang Wei. Progress in ultrafast laser space-selective welding [J]. Chinese Optics, 2020, 13(6): 1209-1223. (in Chinese) doi:  10.37188/CO.2019-0255
[3] Qiao Liang, Hou Xia, Chen Weibiao, et al. High pulse power 2 μm ring laser [J]. Chinese Journal of Lasers, 2009, 36(6): 1327-1331. (in Chinese) doi:  10.3788/CJL20093606.1327
[4] Zhang Xinlu, Yu Long, Zhang Su, et al. Diode-pumped continuous wave and passively Q-switched Tm, Ho: LLF laser at 2 μm [J]. Optics Express, 2013, 21(10): 12629-12634. doi:  10.1364/OE.21.012629
[5] Li Jingzhao, Chen Zhenqiang, Zhu Siqi. Passively Q-switched laser with a Yb: YAG/Cr4+: YAG/YAG composite crystal [J]. Optics and Precision Engineering, 2018, 26(1): 55-61. (in Chinese) doi:  10.3788/OPE.20182601.0055
[6] Kong L, Xie G, Qin Z, et al. Diode-pumped mode-locked femtosecond 2 µm Tm: CaYAlO4 laser[J]. arXiv preprint arXiv, 2017: 1707. 03818.
[7] Feng Dejun, Huang Wenyu, Ji Pengyu, et al. Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber [J]. Optics & Precision Engineering, 2013, 21(5): 1097-1101. (in Chinese)
[8] Lee J, Lee J H. A passively Q-switched holmium-doped fiber laser with graphene oxide at 2058 nm [J]. Applied Sciences, 2021, 11(1): 407. doi:  10.3390/app11010407
[9] Kawase H, Uehara H, Chen H, et al. Passively Q-switched 2.9 μm Er:YAP single crystal laser using graphene saturable absorber [J]. Applied Physics Express, 2019, 12(10): 102006. doi:  10.7567/1882-0786/ab3e61
[10] Sun R, Ling W J, Chen C. Tm, Ho: CaYAlO4 laser operating at 2 089 nm [J]. Chinese Journal of Luminescence, 2020, 41(3): 301-307. (in Chinese) doi:  10.3788/fgxb20204103.0301
[11] Ma J, Xie G Q, Lv P, et al. Graphene mode-locked femtosecond laser at 2 μm wavelength [J]. Optics Letters, 2012, 37(11): 2085-2087. doi:  10.1364/OL.37.002085
[12] Ma J, Xie G, Zhang J, et al. Passively mode-locked Tm: YAG ceramic laser based on graphene [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(1): 50-55.
[13] Wang Y, Chen W, Mark M, et al. Sub-100fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber [J]. Optics Letters, 2017, 42(16): 3076-3079. doi:  10.1364/OL.42.003076
[14] Chen Chen, Xu Qiang, Sun Rui, et al. Q-switched mode-locked all-solid-state Tm:LuAG ceramic laser [J]. Infrared and Laser Engineering, 2021, 50(4): 20190563. (in Chinese)
[15] Walsh B M, Barnes N P, Petros M, et al. Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4 [J]. Journal of Applied Physics, 2004, 95(7): 3255-3271. doi:  10.1063/1.1649808
[16] Sun Rui, Chen Chen, Ling Weijun, et al. Watt-level Q-switched mode-locked Tm:LuAG laser based on graphene oxide [J]. Acta Physica Sinica, 2019, 68(10): 104207. (in Chinese)
[17] Xu Fei, Pan Qikun, Chen Fei, et al. Development progress of Fe2+:ZnSe lasers [J]. Chinese Optics, 2021, 14(3): 458-469. (in Chinese) doi:  10.37188/CO.2020-0180