[1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ϵ and μ [J]. Physicsm-Uspekhi, 1968, 10(4): 509-514.
[2] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena [J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084. doi:  10.1109/22.798002
[3] Padilla W J, Basov D N, Smith D R. Negative refractive index metamaterials [J]. Materials Today, 2006, 9(7-8): 28-35. doi:  10.1016/S1369-7021(06)71573-5
[4] Vasic B, Isic G, Gajic R, et al. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime [J]. Optics Express, 2010, 18(19): 20321-20333. doi:  10.1364/OE.18.020321
[5] Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals [J]. Solid State Communications, 1997, 102(2-3): 165-173. doi:  10.1016/S0038-1098(96)00716-8
[6] Chen H, Ran L, Huang F J, et al. Left-handed materials composed of only S-shaped resonators [J]. Physical Review E, 2004, 70(5): 057605. doi:  10.1103/PhysRevE.70.057605
[7] Smith D R, Kroll N. Negative refractive index in left-handed materials [J]. Physical Review Letters, 2000, 85(14): 2933. doi:  10.1103/PhysRevLett.85.2933
[8] Cai W, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials [J]. Nature Photonics, 2007, 1(4): 224-227. doi:  10.1038/nphoton.2007.28
[9] Schurig D, Mock J J, Justice B, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980. doi:  10.1126/science.1133628
[10] Chen H T, Padilla W J, Zide J M, et al. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600. doi:  10.1038/nature05343
[11] Tao H, Padilla W J, Zhang X, et al. Recent progress in electromagnetic metamaterial devices for terahertz applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 17(1): 92-101.
[12] Wang Q, Rogers E T, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials [J]. Nature Photonics, 2016, 10(1): 60-65. doi:  10.1038/nphoton.2015.247
[13] Genevet P, Yu N, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities [J]. Applied Physics Letters, 2012, 100(1): 13101. doi:  10.1063/1.3673334
[14] Krasnok A, Makarov S, Petrov M, et al. Towards all-dielectric metamaterials and nanophotonics[C]//Metamaterials X. International Society for Optics and Photonics, 2015, 9502: 950203.
[15] Yu Y F, Zhu A Y, Paniagua D R, et al. High-transmission dielectric metasurface with 2 pi phase control at visible wavelengths [J]. Laser & Photonics Reviews, 2015, 9(4): 412-418.
[16] Zhan A, Colburn S, Trivedi R, et al. Low-contrast dielectric metasurface optics [J]. ACS Photonics, 2016, 3(2): 209-214. doi:  10.1021/acsphotonics.5b00660
[17] Shalaev M I, Sun J, Tsukernik A, et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode [J]. Nano Letters, 2015, 15(9): 6261-6266. doi:  10.1021/acs.nanolett.5b02926
[18] Chen B H, Wu P C, Su V C, et al. GaN metalens for pixel-level full-color routing at visible light [J]. Nano Letters, 2017, 17(10): 6345-6352. doi:  10.1021/acs.nanolett.7b03135
[19] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude [J]. Advanced Materials, 2014, 26(29): 5031-5036. doi:  10.1002/adma.201401484
[20] Lee G Y, Yoon G, Lee S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces [J]. Nanoscale, 2018, 10(9): 4237-4245. doi:  10.1039/C7NR07154J
[21] Dai P, Wang Y, Zhu X, et al. Transmissive structural color filters using vertically coupled aluminum nanohole/nanodisk array with a triangular-lattice [J]. Nanotechnology, 2018, 29(39): 395202. doi:  10.1088/1361-6528/aad110
[22] Kumar K, Duan H, Hegde R S, et al. Printing colour at the optical diffraction limit [J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi:  10.1038/nnano.2012.128
[23] Wang Y, Zheng M, Ruan Q, et al. Stepwise-nanocavity-assisted transmissive color filter array microprints [J]. Research, 2018, 2018: 8109054.
[24] Yang Z, Chen Y, Zhou Y, et al. Microscopic interference full-color printing using grayscale-patterned Fabry-Perot resonance cavities [J]. Advanced Optical Materials, 2017, 5(10): 1700029. doi:  10.1002/adom.201700029
[25] Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review [J]. Advanced Photonics, 2019, 1(2): 024002.
[26] Deng J, Yang Y, Tao J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting [J]. ACS Nano, 2019, 13(8): 9237-9246. doi:  10.1021/acsnano.9b03738
[27] Zang W, Yuan Q, Chen R, et al. Chromatic dispersion manipulation based on metalenses [J]. Advanced Materials, 2020, 32(27): 1904935.
[28] Hu Y, Wang X, Luo X, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications [J]. Nanophotonics, 2020, 9(12): 3755-3780.
[29] Colburn S, Zhan A, Bayati E, et al. Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [J]. Optical Materials Express, 2018, 8(8): 2330-2344. doi:  10.1364/OME.8.002330
[30] Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations [J]. Nature Communications, 2016, 7(1): 1-9.
[31] Hu Y, Luo X, Chen Y, et al. 3D-Integrated metasurfaces for full-colour holography[J]. Light: Science & Applications [J]. Nature Communications, 2019, 8(1): 1-9. doi:  10.1038/s41467-018-03155-6
[32] Huang L, Chowdhury D R, Ramani S, et al. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers [J]. Applied Physics Letters, 2012, 101(10): 101102. doi:  10.1063/1.4749823
[33] Liu X, Lan C, Li B, et al. Dual band metamaterial perfect absorber based on artificial dielectric “molecules” [J]. Scientific Reports, 2016, 6: 28906. doi:  10.1038/srep28906
[34] Zhu X, Yan W, Levy U, et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces [J]. Science Advances, 2017, 3(5): e1602487. doi:  10.1126/sciadv.1602487
[35] Sun S, Zhou Z, Zhang C, et al. All-dielectric full-color printing with TiO<sub>2</sub> metasurfaces [J]. ACS Nano, 2017, 11(5): 4445-4452. doi:  10.1021/acsnano.7b00415
[36] Butt H, Montelongo Y, Butler T, et al. Carbon nanotube based high resolution holograms [J]. Advanced Materials, 2012, 24(44): OP331-OP336.
[37] Liu S, Sinclair M B, Saravi S, et al. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces [J]. Nano Letters, 2016, 16(9): 5426-5432. doi:  10.1021/acs.nanolett.6b01816
[38] Liu S, Vabishchevich P P, Vaskin A, et al. An all-dielectric metasurface as a broadband optical frequency mixer [J]. Nature Communications, 2018, 9: 2507. doi:  10.1038/s41467-017-02088-w
[39] Keren Z S, Avayu O, Michaeli L, et al. Nonlinear beam shaping with plasmonic metasurfaces [J]. ACS Photonics, 2016, 3(1): 117-123. doi:  10.1021/acsphotonics.5b00528
[40] Schlickriede C, Waterman N, Reineke B, et al. Imaging through nonlinear metalens using second harmonic generation [J]. Advanced Materials, 2018, 30(8): 1703843. doi:  10.1002/adma.201703843
[41] Gao Y, Fan Y, Wang Y, et al. Nonlinear holographic all-dielectric metasurfaces [J]. Nano Letters, 2018, 18(12): 8054-8061. doi:  10.1021/acs.nanolett.8b04311
[42] Khorasaninejad M, Crozier K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter [J]. Nature Communications, 2014, 5(1): 1-6.
[43] Rubin N A, Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera [J]. Science, 2019, 365(6448): eaax1839. doi:  10.1126/science.aax1839
[44] Yang Z, Wang Z, Wang Y, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling [J]. Nature Communications, 2018, 9(1): 1-7. doi:  10.1038/s41467-018-07056-6
[45] Avayu O, Almeida E, Prior Y, et al. Composite functional metasurfaces for multispectral achromatic optics [J]. Nature Communications, 2017, 8(1): 1-7. doi:  10.1038/s41467-016-0009-6
[46] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi:  10.1038/s41565-017-0034-6
[47] Wang S, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible [J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi:  10.1038/s41565-017-0052-4
[48] Zhao Z, Pu M, Gao H, et al. Multispectral optical metasurfaces enabled by achromatic phase transition [J]. Scientific Reports, 2015, 5(1): 1-9. doi:  10.9734/JSRR/2015/14076
[49] Zhao W, Liu B, Jiang H, et al. Full-color hologram using spatial multiplexing of dielectric metasurface [J]. Opt Lett, 2016, 41(1): 147-150. doi:  10.1364/OL.41.000147
[50] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[51] Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas [J]. Science, 2012, 335(6067): 427-427. doi:  10.1126/science.1214686
[52] Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light [J]. Nature Communications, 2012, 3(1): 1-6.
[53] Huang L, Chen X, Muhlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface [J]. Nature Communications, 2013, 4(1): 1-8.
[54] Huang L, Muhlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces [J]. Advanced Materials, 2015, 27(41): 6444-6449. doi:  10.1002/adma.201502541
[55] Luo X, Hu Y, Li X, et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption [J]. Advanced Optical Materials, 2020, 8(8): 1902020. doi:  10.1002/adom.201902020
[56] Li X, Chen L, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation [J]. Science Advances, 2016, 2(11): e1601102. doi:  10.1126/sciadv.1601102
[57] Yu P, Li J, Li X, et al. Generation of switchable singular beams with dynamic metasurfaces [J]. ACS Nano, 2019, 13(6): 7100-7106. doi:  10.1021/acsnano.9b02425
[58] Li J, Kamin S, Zheng G, et al. Addressable metasurfaces for dynamic holography and optical information encryption [J]. Science Advances, 2018, 4(6): eaar6768. doi:  10.1126/sciadv.aar6768
[59] Yu P, Li J, Zhang S, et al. Dynamic Janus metasurfaces in the visible spectral region [J]. Nano Letters, 2018, 18(7): 4584-4589. doi:  10.1021/acs.nanolett.8b01848
[60] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Letters, 2012, 12(12): 6223-6229. doi:  10.1021/nl3032668
[61] Pors A, Albrektsen O, Radko I P, et al. Gap plasmon-based metasurfaces for total control of reflected light [J]. Scientific Reports, 2013, 3(1): 1-6.
[62] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images [J]. Nano Letters, 2014, 14(1): 225-230. doi:  10.1021/nl403811d
[63] Zheng G, Muhlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi:  10.1038/nnano.2015.2
[64] Wen D, Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms [J]. Nature Communications, 2015, 6(1): 1-7.
[65] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram [J]. Nano Letters, 2015, 15(5): 3122-3127. doi:  10.1021/acs.nanolett.5b00184
[66] Deng Z L, Deng J, Zhuang X, et al. Diatomic metasurface for vectorial holography [J]. Nano Letters, 2018, 18(5): 2885-2892. doi:  10.1021/acs.nanolett.8b00047
[67] Deng Z L, Jin M, Ye X, et al. Full-Color complex-amplitude vectorial holograms based on multi-freedom metasurfaces [J]. Advanced Functional Materials, 2020, 30(21): 1910610. doi:  10.1002/adfm.201910610
[68] Wang S, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices [J]. Nature Communications, 2017, 8(1): 1-9. doi:  10.1038/s41467-017-00166-7
[69] Zhang C, Yue F, Wen D, et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams [J]. ACS Photonics, 2017, 4(8): 1906-1912. doi:  10.1021/acsphotonics.7b00587
[70] Semmlinger M, Zhang M, Tseng M L, et al. Generating third harmonic vacuum ultraviolet light with a TiO<sub>2</sub> metasurface [J]. Nano Letters, 2019, 19(12): 8972-8978. doi:  10.1021/acs.nanolett.9b03961
[71] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements [J]. Science, 2014, 345(6194): 298-302. doi:  10.1126/science.1253213
[72] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission [J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi:  10.1038/nnano.2015.186
[73] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation [J]. Science, 2015, 347(6228): 1342-1345. doi:  10.1126/science.aaa2494
[74] Wang B, Dong F, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms [J]. Nano Letters, 2016, 16(8): 5235-5240. doi:  10.1021/acs.nanolett.6b02326
[75] Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms [J]. Optica, 2016, 3(12): 1504-1505. doi:  10.1364/OPTICA.3.001504
[76] Wang B, Dong F, Yang D, et al. Polarization-controlled color-tunable holograms with dielectric metasurfaces [J]. Optica, 2017, 4(11): 1368-1371. doi:  10.1364/OPTICA.4.001368
[77] Huang K, Dong Z, Mei S, et al. Silicon multi-metaholograms for the broadband visible light [J]. Laser & Photonics Reviews, 2016, 10(3): 500-509.
[78] Jin L, Dong Z, Mei S, et al. Noninterleaved metasurface for (26-1) spin-and wavelength-encoded holograms [J]. Nano Letters, 2018, 18(12): 8016-8024. doi:  10.1021/acs.nanolett.8b04246
[79] Zhao R, Sain B, Wei Q, et al. Multichannel vectorial holographic display and encryption [J]. Light: Science & Applications, 2018, 7(1): 1-9.
[80] Arbabi E, Kamali S M, Arbabi A, et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation [J]. ACS Photonics, 2019, 6(11): 2712-2718. doi:  10.1021/acsphotonics.9b00678
[81] Arbabi E, Arbabi A, Kamali S M, et al. Multiwavelength metasurfaces through spatial multiplexing [J]. Scientific Reports, 2016, 6: 32803. doi:  10.1038/srep32803
[82] Arbabi E, Arbabi A, Kamali S M, et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules [J]. Optica, 2016, 3(6): 628-633. doi:  10.1364/OPTICA.3.000628
[83] Arbabi E, Arbabi A, Kamali S M, et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces [J]. Optica, 2017, 4(6): 625-632. doi:  10.1364/OPTICA.4.000625
[84] Paniagua D R, Yu Y F, Khaidarov E, et al. A metalens with a near-unity numerical aperture [J]. Nano Letters, 2018, 18(3): 2124-2132. doi:  10.1021/acs.nanolett.8b00368
[85] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses [J]. Light: Science & Applications, 2018, 7(1): 1-11.
[86] Wang K, Titchener J G, Kruk S S, et al. Quantum metasurface for multiphoton interference and state reconstruction [J]. Science, 2018, 361(6407): 1104-1108. doi:  10.1126/science.aat8196
[87] Stav T, Faerman A, Maguid E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials [J]. Science, 2018, 361(6407): 1101-1104. doi:  10.1126/science.aat9042
[88] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles [J]. Physical Review X, 2017, 7(4): 041056. doi:  10.1103/PhysRevX.7.041056
[89] Yavas O, Svedendahl M, Dobosz P, et al. On-a-chip biosensing based on all-dielectric nanoresonators [J]. Nano Letters, 2017, 17(7): 4421-4426. doi:  10.1021/acs.nanolett.7b01518
[90] Yesilkoy F, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces [J]. Nature Photonics, 2019, 13(6): 390-396. doi:  10.1038/s41566-019-0394-6
[91] Leitis A, Tittl A, Liu M, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval [J]. Science Advances, 2019, 5(5): eaaw2871. doi:  10.1126/sciadv.aaw2871
[92] Arbabi E, Kamali S M, Arbabi A, et al. Full-Stokes imaging polarimetry using dielectric metasurfaces [J]. ACS Photonics, 2018, 5(8): 3132-3140. doi:  10.1021/acsphotonics.8b00362
[93] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Letters, 2014, 14(3): 1394-1399. doi:  10.1021/nl4044482
[94] Yoon G, Lee D, Nam K T, et al. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses [J]. ACS Nano, 2018, 12(7): 6421-6428. doi:  10.1021/acsnano.8b01344
[95] Wei Q, Sain B, Wang Y, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces [J]. Nano Letters, 2019, 19(12): 8964-8971. doi:  10.1021/acs.nanolett.9b03957
[96] Overvig A C, Shrestha S, Malek S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase [J]. Light: Science & Applications, 2019, 8(1): 1-12.
[97] Bao Y, Yu Y, Xu H, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control [J]. Light: Science & Applications, 2019, 8(1): 1-10.
[98] Lin R J, Su V C, Wang S, et al. Achromatic metalens array for full-colour light-field imaging [J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi:  10.1038/s41565-018-0347-0
[99] Ren H, Briere G, Fang X, et al. Metasurface orbital angular momentum holography [J]. Nature Communications, 2019, 10(1): 1-8. doi:  10.1038/s41467-018-07882-8
[100] Li L, Liu Z, Ren X, et al. Metalens-array–based high-dimensional and multiphoton quantum source [J]. Science, 2020, 368(6498): 1487-1490. doi:  10.1126/science.aba9779
[101] Hu Y, Li L, Wang Y, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface [J]. Nano Letters, 2019, 20(2): 994-1002.
[102] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352(6290): 1190-1194. doi:  10.1126/science.aaf6644
[103] Khorasaninejad M, Zhu A Y, Roques C C, et al. Polarization-insensitive metalenses at visible wavelengths [J]. Nano Letters, 2016, 16(11): 7229-7234. doi:  10.1021/acs.nanolett.6b03626
[104] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion [J]. Nano Letters, 2017, 17(3): 1819-1824. doi:  10.1021/acs.nanolett.6b05137
[105] Chen W T, Zhu A Y, Sisler J, et al. Broadband achromatic metasurface-refractive optics [J]. Nano Letters, 2018, 18(12): 7801-7808. doi:  10.1021/acs.nanolett.8b03567
[106] Chen W T, Zhu A Y, Sisler J, et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures [J]. Nature Communications, 2019, 10(1): 1-7. doi:  10.1038/s41467-018-07882-8
[107] Khorasaninejad M, Chen W, Zhu A, et al. Multispectral chiral imaging with a metalens [J]. Nano Letters, 2016, 16(7): 4595-4600. doi:  10.1021/acs.nanolett.6b01897
[108] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to–orbital angular momentum conversion of light [J]. Science, 2017, 358(6365): 896-901. doi:  10.1126/science.aao5392
[109] Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser [J]. Nature Photonics, 2020, 14: 1-6.
[110] Huang K, Deng J, Leong H S, et al. Ultraviolet metasurfaces of ~80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting [J]. Laser & Photonics Reviews, 2019, 13(5): 1800289.
[111] Zhang C, Divitt S, Fan Q, et al. Low-loss metasurface optics down to the deep ultraviolet region [J]. Light: Science & Applications, 2020, 9(1): 1-10.
[112] Andren D, Martinez L J, Tassin P, et al. Large-scale metasurfaces made by an exposed resist [J]. ACS Photonics, 2020, 7(4): 885-892. doi:  10.1021/acsphotonics.9b01809
[113] Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light [J]. Nature Communications, 2013, 4(1): 1-6.
[114] Wan W, Gao J, Yang X. Full-color plasmonic metasurface holograms [J]. ACS Nano, 2016, 10(12): 10671-10680. doi:  10.1021/acsnano.6b05453
[115] Choudhury S, Guler U, Shaltout A, et al. Pancharatnam–Berry phase manipulating metasurface for visible color hologram based on low loss silver thin film [J]. Advanced Optical Materials, 2017, 5(10): 1700196. doi:  10.1002/adom.201700196
[116] Lee Y, Kim J, Woo J, et al. Electro-optic switching in phase-discontinuity complementary metasurface twisted nematic cell [J]. Optics Express, 2014, 22(17): 20816-20827. doi:  10.1364/OE.22.020816
[117] Zhang Y, Liu W, Gao J, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces [J]. Advanced Optical Materials, 2018, 6(4): 1701228. doi:  10.1002/adom.201701228
[118] Chen S, Cai Y, Li G, et al. Geometric metasurface fork gratings for vortex-beam generation and manipulation [J]. Laser & Photonics Reviews, 2016, 10(2): 322-326.
[119] Chen C F, Ku C T, Tai Y H, et al. Creating optical near-field orbital angular momentum in a gold metasurface [J]. Nano Letters, 2015, 15(4): 2746-2750. doi:  10.1021/acs.nanolett.5b00601
[120] Chen Y, Yang X, Gao J. Spin-selective second-harmonic vortex beam generation with babinet-inverted plasmonic metasurfaces [J]. Advanced Optical Materials, 2018, 6(19): 1800646. doi:  10.1002/adom.201800646
[121] Lin J, Mueller J B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons [J]. Science, 2013, 340(6130): 331-334. doi:  10.1126/science.1233746
[122] Xu Z, Li T, Zhang D H, et al. Groove-structured metasurfaces for modulation of surface plasmon propagation [J]. Applied Physics Express, 2014, 7(5): 052001. doi:  10.7567/APEX.7.052001
[123] Cheng F, Gao J, Luk T S, et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption [J]. Scientific Reports, 2015, 5: 11045. doi:  10.1038/srep11045
[124] Ma X, Pu M, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing [J]. Scientific Reports, 2015, 5: 10365. doi:  10.1038/srep10365
[125] Li Z, Wang W, Rosenmann D, et al. All-metal structural color printing based on aluminum plasmonic metasurfaces [J]. Optics Express, 2016, 24(18): 20472-20480. doi:  10.1364/OE.24.020472
[126] Chen Y, Gao J, Yang X. Direction-controlled bifunctional metasurface polarizers [J]. Laser & Photonics Reviews, 2018, 12(12): 1800198.
[127] Liu Z, Du H, Li Z Y, et al. Invited article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation [J]. APL Photonics, 2018, 3(10): 100803. doi:  10.1063/1.5043065
[128] Karvounis A, Gholipour B, MacDonald K F, et al. All-dielectric phase-change reconfigurable metasurface [J]. Applied Physics Letters, 2016, 109(5): 051103. doi:  10.1063/1.4959272
[129] Gholipour B, Adamo G, Cortecchia D, et al. Organometallic perovskite metasurfaces [J]. Advanced Materials, 2017, 29(9): 1604268. doi:  10.1002/adma.201604268
[130] Smalley J, Vallini F, Montoya S, et al. Luminescent hyperbolic metasurfaces [J]. Nature Communications, 2017, 8(1): 1-8. doi:  10.1038/ncomms13793
[131] Gorkunov M V, Rogov O Y, Kondratov A V, et al. Chiral visible light metasurface patterned in monocrystalline silicon by focused ion beam [J]. Scientific Reports, 2018, 8(1): 1-10. doi:  10.1038/s41598-017-17765-5
[132] Semmlinger M, Tseng M L, Yang J, et al. Vacuum ultraviolet light-generating metasurface [J]. Nano Letters, 2018, 18(9): 5738-5743. doi:  10.1021/acs.nanolett.8b02346
[133] Komlenok M S, Tikhodeev S G, Weiss T, et al. All-carbon diamond/graphite metasurface: Experiment and modeling [J]. Applied Physics Letters, 2018, 113(4): 041101.
[134] Yan C, Li X, Pu M, et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces [J]. ACS Photonics, 2019, 6(3): 628-633. doi:  10.1021/acsphotonics.8b01119
[135] Berzins J, Indrisiunas S, van Erve K, et al. Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference [J]. ACS Nano, 2020, 14(5): 6138-6149. doi:  10.1021/acsnano.0c01993
[136] He Y, Liu Z, Liu Y, et al. Higher-order laser mode converters with dielectric metasurfaces [J]. Opt Lett, 2015, 40(23): 5506-5509. doi:  10.1364/OL.40.005506
[137] Drevinskas R, Beresna M, Zhang J, et al. Ultrafast laser-induced metasurfaces for geometric phase manipulation [J]. Advanced Optical Materials, 2017, 5(1): 1600575.
[138] Li B, Li X, Zhao R, et al. Polarization multiplexing terahertz metasurfaces through spatial femtosecond laser-shaping fabrication [J]. Advanced Optical Materials, 2020, 8(12): 10.1022/adom.201700090.
[139] Wang Z, Yang T, Zhang Y, et al. Flat lenses based on 2D perovskite nanosheets [J]. Adv Mater, 2020: e2001388.
[140] Zhou J, Qian H, Hu G, et al. Broadband photonic spin hall metalens [J]. ACS Nano, 2018, 12(1): 82-88. doi:  10.1021/acsnano.7b07379
[141] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nature Biotechnology, 2003, 21(11): 1369-1377. doi:  10.1038/nbt899
[142] Yang Dong, Liu Lipu, Yang Hong,et al. Laser micro-nano three-dimensional printing[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011411. (in Chinese)
[143] Rybin M V, Samusev K B, Lukashenko S Y, et al. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure [J]. Sci Rep, 2016, 6: 30773. doi:  10.1038/srep30773
[144] Faniayeu I, Mizeikis V. Realization of a helix-based perfect absorber for IR spectral range using the direct laser write technique [J]. Optical Materials Express, 2017, 7(5): 1453.
[145] Wang H, Liu Y, Ruan Q, et al. Off-axis holography with uniform ollumination via 3D printed diffractive optical elements [J]. Advanced Optical Materials, 2019, 7(12): 1900068.
[146] Wang H, Wang H, Zhang W, et al. Toward near-perfect diffractive optical elements via nanoscale 3D printing [J]. ACS Nano, 2020, 7: 04313.
[147] Xu Z, Dong Y, Tseng C K, et al. CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers [J]. Opt Express, 2019, 27(18): 26060-26069. doi:  10.1364/OE.27.026060
[148] Hu T, Tseng C K, Fu Y H, et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer [J]. Opt Express, 2018, 26(15): 19548-19554. doi:  10.1364/OE.26.019548
[149] Liu M, Fan Q, Yu L, et al. Polarization-independent infrared micro-lens array based on all-silicon metasurfaces [J]. Opt Express, 2019, 27(8): 10738-10744. doi:  10.1364/OE.27.010738
[150] Hu T, Zhong Q, Li N, et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging [J]. Nanophotonics, 2020, 9(4): 823-830. doi:  10.1515/nanoph-2019-0470
[151] She A, Zhang S, Shian S, et al. Large area metalenses: design, characterization, and mass manufacturing [J]. Opt Express, 2018, 26(2): 1573-1585. doi:  10.1364/OE.26.001573
[152] Dong Y, Xu Z, Li N, et al. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform [J]. Nanophotonics, 2019, 9(1): 149-157. doi:  10.1515/nanoph-2019-0364
[153] Park J S, Zhang S, She A, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography [J]. Nano Letters, 2019, 19(12): 8673-8682. doi:  10.1021/acs.nanolett.9b03333
[154] Roy T, Zhang S, Jung I W, et al. Dynamic metasurface lens based on MEMS technology [J]. APL Photonics, 2018, 3(2): 021302.
[155] Luo J, Zeng B, Wang C, et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography [J]. Nanoscale, 2015, 7(44): 18805-18812. doi:  10.1039/C5NR05153C
[156] Liu L, Zhang X, Zhao Z, et al. Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography [J]. Advanced Optical Materials, 2017, 5(21): 1700429.
[157] Makarov S V, Milichko V, Ushakova E V, et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces [J]. ACS Photonics, 2017, 4(4): 728-735. doi:  10.1021/acsphotonics.6b00940
[158] Chen W, Tymchenko M, Gopalan P, et al. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic petasurfaces [J]. Nano Letters, 2015, 15(8): 5254-5260. doi:  10.1021/acs.nanolett.5b02647
[159] Yao Y, Wu W. All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector [J]. Advanced Optical Materials, 2017, 5(14): 1700090.
[160] Iwanaga M. Large-area metasurfaces produced with nm precision by UV nanoimprint lithography[C]//2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016: 1857-1861.
[161] Miyazaki H T, Kasaya T, Oosato H, et al. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO<sub>2</sub> sensing [J]. Sci Technol Adv Mater, 2015, 16(3): 035005. doi:  10.1088/1468-6996/16/3/035005
[162] Yao Y, Liu H, Wang Y, et al. Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range [J]. Optics Express, 2016, 24(14): 15362-15372. doi:  10.1364/OE.24.015362
[163] Lee G Y, Hong J Y, Hwang S, et al. Metasurface eyepiece for augmented reality [J]. Nature Communications, 2018, 9(1): 4562. doi:  10.1038/s41467-018-07011-5
[164] Hasan R M M, Luo X, Sun J. Rolling nanoelectrode lithography [J]. Micromachines (basel), 2020, 11(7): 070656.
[165] Nagato K, Takahashi K, Sato T, et al. Laser-assisted replication of large-area nanostructures [J]. Journal of Materials Processing Technology, 2014, 214(11): 2444-2449. doi:  10.1016/j.jmatprotec.2014.05.025
[166] Bonod N. Silicon photonics: Large-scale dielectric metasurfaces [J]. Nat Mater, 2015, 14(7): 664-665. doi:  10.1038/nmat4338
[167] Nemiroski A, Gonidec M, Fox J M, et al. Engineering shadows to fabricate optical metasurfaces [J]. ACS Nano, 2014, 8(11): 11061-11070. doi:  10.1021/nn504214b
[168] Jaksic Z, Vasiljevic R D, Maksimovic M, et al. Nanofabrication of negative refractive index metasurfaces [J]. Microelectronic Engineering, 2006, 83(4-9): 1786-1791. doi:  10.1016/j.mee.2006.01.197