[1] Li Z, Heidt A, Simakov N, et al. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800-2050 nm window [J]. Optics Express, 2013, 21(22): 26450-26455. doi:  10.1364/OE.21.026450
[2] Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres [J]. Optics Express, 2005, 13(1): 236-244. doi:  10.1364/OPEX.13.000236
[3] Petrovich M, Poletti F, Wooler J P, et al. Demonstration of amplified data transmission at 2 microm in a low-loss wide bandwidth hollow core photonic bandgap fiber [J]. Optics Express, 2013, 21(23): 28559-28569. doi:  10.1364/OE.21.028559
[4] Shen W, Du J, Sun L, et al. 100-Gbps 100-m hollow-core fiber optical interconnection at 2-micron waveband by PS-DMT [C]//Optical Fiber Communications Conference and Exposition, 2020: 1.
[5] Liu Z, Chen Y, Li Z, et al. High-capacity directly modulated optical transmitter for 2-μm spectral region [J]. Journal of Lightwave Technology, 2015, 33(7): 1373-1379. doi:  10.1109/JLT.2015.2397700
[6] Xu K, Sun L, Xie Y, et al. Transmission of IM/DD signals at 2 μm wavelength using PAM and CAP [J]. IEEE Photonics Journal, 2016, 8(5): 1-7.
[7] Shen W, Du J, Wang C, et al. Single lane 90-Gbps optical interconnection at 2-micron waveband [C]//Optoelectronics and Communications Conference, 2019: 3-6.
[8] Shen W, Du J, Sun L, et al. Low-latency and high-speed hollow-core fiber optical interconnection at 2-micron waveband [J]. Journal of Lightwave Technology, 2020, 38(15): 3874-3882. doi:  10.1109/JLT.2020.2982971
[9] Gu Y, Zhang Y, Cao Y, et al. 2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature [J]. Applied Physics Express, 2014, 7: 032701. doi:  10.7567/APEX.7.032701
[10] Wang R, Sprengel S, Malik A, et al. Heterogeneously integrated III-V-on-silicon 2.3 x μm distributed feedback lasers based on a type-II active region [J]. Applied Physics Letters, 2016, 109: 221111. doi:  10.1063/1.4971350
[11] Kiani K, Frankis H, Mateman R, et al. Thulium-doped tellurium oxide microring lasers integrated on a low-loss silicon nitride platform [J]. Optical Materials Express, 2021, 11(11): 3656-3665. doi:  10.1364/OME.444087
[12] Li N, Magden E, Su Z, et al. Broadband 2-µm emission on silicon chips: Monolithically integrated Holmium lasers [J]. Optics Express, 2015, 26(3): 2220-2230.
[13] Latawiec P, Venkataraman V, Burek J, et al. On-chip diamond Raman laser [J]. Optica, 2015, 2(11): 924-928. doi:  10.1364/OPTICA.2.000924
[14] Volet N, Spott A, Stanton J, et al. Semiconductor optical amplifiers at 2.0-µm wavelength on silicon [J]. Laser Photonics Reviews, 2017, 11(2): 1600165. doi:  10.1002/lpor.201600165
[15] Kiani K, Frankis H, Mateman R, et al. Thulium-doped tellurium oxide waveguide amplifier with 7.6 dB net gain on a silicon nitride chip [J]. Optics Letters, 2019, 44(23): 5788-5791. doi:  10.1364/OL.44.005788
[16] Wang R, Sprengel S, Muneeb M, et al. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits [J]. Optics Express, 2015, 23(20): 26834-26841. doi:  10.1364/OE.23.026834
[17] Nedeljkovic M, Soref R, Mashanovich G. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14μm infrared wavelength range [J]. IEEE Photonics Journal, 2011, 3(6): 1171-1180. doi:  10.1109/JPHOT.2011.2171930
[18] Li D, Liu Y, Song Q, et al. Millimeter-long silicon photonic antenna for optical phased arrays at 2-μm wavelength band [J]. IEEE Photonics Journal, 2021, 13(2): 1-7.
[19] Van Camp M A, Assefa S, Gill D, et al. Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer [J]. Optics Express, 2012, 20(27): 28009-28016. doi:  10.1364/OE.20.028009
[20] Cao W, Hagan D, Thomson D, et al. High-speed silicon modulators for the 2  μm wavelength band [J]. Optica, 2018, 5(9): 1055-1062. doi:  10.1364/OPTICA.5.001055
[21] Li W, Li M, Zhang H, et al. 50 Gbit/s silicon modulator operated at 1950 nm [C]//Optical Fiber Communications Conference and Exposition, 2020: 4.
[22] Wang X, Shen W, Li W, et al. High-speed silicon photonic Mach–Zehnder modulator at 2 μm [J]. Photonics Research, 2021, 9(4): 535-540. doi:  10.1364/PRJ.417107
[23] Shen W, Zhou G, Du J, et al. High-speed silicon micro-ring modulator at 2-μm waveband [C]//Optoelectronics and Communications Conference, 2021: 7.
[24] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages [J]. Nature, 2018, 562(7725): 101-104. doi:  10.1038/s41586-018-0551-y
[25] Pan B, Hu J, Huang Y, et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-microm wavelength [J]. Optics Express, 2021, 29(12): 17710-17717. doi:  10.1364/OE.416908
[26] Anthony R, Hagan D, Genuth-Okon D, et al. Extended wavelength responsivity of a Germanium photodetector integrated with a silicon waveguide exploiting the indirect transition [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(2): 1-7.
[27] Ackert J, Thomson D, Shen L, et al. High-speed detection at two micrometres with monolithic silicon photodiodes [J]. Nature Photonics, 2015, 9(6): 393-396. doi:  10.1038/nphoton.2015.81
[28] Xu S, Wang W, Huang Y, et al. High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate [J]. Optics Express, 2019, 27(4): 5798-5813. doi:  10.1364/OE.27.005798
[29] Tossoun B, Zang J, Addamane S, et al. InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength [J]. Journal of Lightwave Technology, 2018, 36(20): 4981-4987. doi:  10.1109/JLT.2018.2867808
[30] Yin Y, Cao R, Guo J, et al. High‐speed and high‐responsivity hybrid silicon/Black‐Phosphorus waveguide photodetectors at 2 µm [J]. Laser & Photonics Reviews, 2019, 13: 1900032.
[31] Guo J, Li J, Liu C, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55μm [J]. Light: Science & Applications, 2020, 9(29): 1-11.
[32] Wun J, Wang Y, Chen Y, et al. GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5μm wavelength [J]. IEEE Transactions on Electron Devices, 2016, 63(7): 2796-2801. doi:  10.1109/TED.2016.2561202
[33] Tossoun B, Stephens R, Wang Y, et al. High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells [J]. IEEE Photonics Technology Letters, 2018, 30(4): 399-402. doi:  10.1109/LPT.2018.2793663
[34] Chen Y, Xie Z, Huang J, et al. High-speed uni-traveling carrier photodiode for 2  μm wavelength application [J]. Optica, 2019, 6(7): 884-889. doi:  10.1364/OPTICA.6.000884
[35] Mcintyre R. Multiplication noise in uniform avalanche diodes [J]. IEEE Transactions on Electron Devices, 1966, 13(1): 164-168.
[36] People R, Bean J. Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures [J]. Applied Physics Letters, 1985, 47(3): 322-324. doi:  10.1063/1.96206
[37] Zhou H, Xu S, Lin Y, et al. High-efficiency GeSn/Ge multiple-quantum-well photodetectors with photon-trapping microstructures operating at 2 microm [J]. Optics Express, 2020, 28(7): 10280-10293. doi:  10.1364/OE.389378
[38] Ma H, Yang H, Tang B, et al. Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform [J]. Chinese Optics Letters, 2021, 19(7): 071301. doi:  10.3788/COL202119.071301
[39] Li J, Liu Y, Meng Y, et al. 2 μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW [J]. IEEE Photonics Technology Letters, 2018, 30(5): 471-474. doi:  10.1109/LPT.2018.2799194
[40] Zhang L, Zhang W, Wang X, et al. Investigation of Ge20Sb15Se65 photonic crystal slab waveguides with slow light at infrared wavelength [J]. Optical Materials Express, 2013, 3(9): 1438-1443. doi:  10.1364/OME.3.001438
[41] Shen W, Zeng P, Yang Z, et al. Chalcogenide glass photonic integration for improved 2  μm optical interconnection [J]. Photonics Research, 2020, 8(9): 1484-1490. doi:  10.1364/PRJ.398957
[42] Muratsubaki T, Fujisawa T, Sawada Y, et al. Fabrication-tolerant four-mode waveguide crossing based on PhC-like subwavelength structures at 2 µm [C]//Advanced Photonics Congress, 2021: 3.
[43] Ruan Z, Shen L, Zheng S, et al. Subwavelength grating slot (SWGS) waveguide at 2 μm for chip-scale data transmission [J]. Nanophotonics, 2018, 7(5): 865-871. doi:  10.1515/nanoph-2017-0090
[44] Lamy M, Finot C, Parriaux A, et al. Si-rich silicon-nitride waveguides for optical transmissions and towards wavelength conversion around 2 µm [J]. Applied Optics, 2019, 58(19): 5165-5169.
[45] Li J, Liu L, Sun W, et al. The 2-μm fully-etched silicon grating coupler [C]//Conference on Lasers and Electro-Optics Pacific Rim, 2017.
[46] Wang Z, Liu Y, Wang S, et al. Ultra-compact and broadband 3-dB power splitter based on subwavelength grating at 2-μm [C]//Optical Fiber Communications Conference and Exposition, 2021: 5.
[47] Xie H, Liu Y, Sun W, et al. Inversely designed 1 × 4 power splitter with arbitrary ratios at 2-μm spectral band [J]. IEEE Photonics Journal, 2018, 10(4): 1-6.
[48] Stanton E, Volet N, Bowers J. Silicon arrayed waveguide gratings at 2.0-mum wavelength characterized with an on-chip resonator [J]. Optics Letters, 2018, 43(5): 1135-1138. doi:  10.1364/OL.43.001135
[49] Liu Y, Li Z, Li D, et al. Thermo-optic tunable silicon arrayed waveguide grating at 2-μm wavelength band [J]. IEEE Photonics Journal, 2020, 12(4): 1-8.
[50] Liu Y, Wang X, Yao Y, et al. Silicon photonic arrayed waveguide grating with 64 channels for the 2 µm spectral range [J]. Optics Letters, 2022, 47(5): 1186-1189. doi:  10.1364/OL.452476
[51] Zhang H, Gleeson M, Ye N, et al. Dense WDM transmission at 2 µm enabled by an arrayed waveguide grating [J]. Optics Letters, 2015, 40(14): 3308-3311. doi:  10.1364/OL.40.003308
[52] Huang M, Zheng S, Long Y, et al. Experimental demonstration of 2-μm on-chip two-mode division multiplexing using tapered directional coupler-based mode (de) multiplexer [C]//Optical Fiber Communications Conference and Exposition, 2018: 6.
[53] Zheng S, Huang M, Cao X, et al. Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2  μm waveband [J]. Photonics Research, 2019, 7(9): 1030-1035. doi:  10.1364/PRJ.7.001030
[54] Zheng S, Huang M, Cao X, et al. Demonstration of 2 um on-chip two-mode division multiplexing using tapered directional coupler-based mode (de)multiplexer [C]//Conference on Lasers and Electro-Optics, 2018: 5.
[55] Liu D, Wu H, Dai D. Silicon multimode waveguide grating filter at 2 μm [J]. Journal of Lightwave Technology, 2019, 37(10): 2217-2222. doi:  10.1109/JLT.2019.2900439
[56] Shen L, Huang M, Zheng S, et al. High-performance silicon 2 × 2 thermo-optic switch for the 2 μm wavelength band [J]. IEEE Photonics Journal, 2019, 11(4): 1-6.
[57] Yu T, Liu Y, Li Z, et al. Integrated thermo-optic switch for 2 μm spectral band [C]//The International Photonics and Optoelectronics Meeting, 2019: 4.
[58] Xu J, Li X, Qiao Z, et al. 1×N (N=2, 8) silicon selector switch for prospective technologies at the 2 μm waveband [J]. IEEE Photonics Technology Letters, 2020, 32(18): 1127-1130. doi:  10.1109/LPT.2020.3014204
[59] Zhong C, Ma H, Sun C, et al. Fast thermo-optical modulators with doped-silicon heaters operating at 2 μm [J]. Optics Express, 2021, 29(15): 23508-23516. doi:  10.1364/OE.430756