[1] 段婧, 毛节泰. 气溶胶与云相互作用的研究进展[J]. 地球科学进展, 2008, 23(3): 252-261. doi:  10.3321/j.issn:1001-8166.2008.03.005

Duan Jing, Mao Jietai. Progress in researches on interaction between aerosol and cloud [J]. Advances in Earth Science, 2008, 23(3): 252-261. (in Chinese) doi:  10.3321/j.issn:1001-8166.2008.03.005
[2] 张军强, 薛闯, 高志良, 等. 云与气溶胶光学遥感仪器发展现状及趋势[J]. 中国光学, 2015,8(5): 5-24.

Zhang Junqiang, Xue Chuang, Gao Zhiliang, et al. Optical remote sensor for cloud and aerosol from space: past, present and future [J]. Chinese Optics, 2015,8(5): 5-24. (in Chinese)
[3] 王富. 中国东部地区气溶胶—云相互作用卫星遥感建模研究[D]. 成都: 电子科技大学, 2015.

Wang Fu. Analysis of aerosol-cloud interaction observed from spaceborne sensors over Eastern China[D]. Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese)
[4] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
[5] Rao C R N, Stowe L L, Mcclain E P. Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications [J]. International Journal of Remote Sensing, 1989, 10(4-5): 743-749. doi:  10.1080/01431168908903915
[6] Torres O, Bhartia P K, Herman J R, et al. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements [J]. Journal of the Atmospheric Sciences, 2002, 59(3): 398-413. doi:  10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2
[7] Curier R L, Veefkind J P, Braak R, et al. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe [J]. Journal of Geophysical Research Atmospheres, 2008, 113(D17): 1-16.
[8] Barnes W L, Xiong X, Guenther B W, et al. Development, characterization, and performance of the EOS MODIS sensors[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5151: 337-345.
[9] Martonchik J V, Diner D J, Crean K A, et al. Regional aerosol retrieval results from MISR [J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(7): 1520-1531.
[10] Deuzé J L, Goloub P, Herman M, et al. Estimate of the aerosol properties over the ocean with POLDER [J]. Journal of Geophysical Research Atmospheres, 2000, 105(D12): 15329-15346. doi:  10.1029/2000JD900148
[11] 郑永超, 王玉诏, 岳春宇. 天基大气环境观测激光雷达技术和应用发展研究[J]. 红外与激光工程, 2018, 47(3): 0302002. doi:  10.3788/IRLA201847.0302002

Zheng Yongchao, Wang Yuchao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar [J]. Infrared and Laser Engineering, 2018, 47(3): 0302002. (in Chinese) doi:  10.3788/IRLA201847.0302002
[12] 宋长波, 赵一鸣. 星载云、气溶胶遥感雷达技术现状与发展趋势[J]. 遥测遥控, 2017, 38(6): 10-16. doi:  10.3969/j.issn.2095-1000.2017.06.003

Song Changbo, Zhao Yiming. Development status and direction of spaceborne lidar and radar for cloud and aerosol remote sensing [J]. Journal of Telemetry, Tracking and Command, 2017, 38(6): 10-16. (in Chinese) doi:  10.3969/j.issn.2095-1000.2017.06.003
[13] 卢乃锰, 闵敏, 董立新, 等. 星载大气探测激光雷达发展与展望[J]. 遥感学报, 2016, 20(1): 1-10.

Lu Naimeng, Min Min, Dong Lixin, et al. Development and prospect of spaceborne LIDAR for atmospheric detection [J]. Journal of Remote Sening, 2016, 20(1): 1-10. (in Chinese)
[14] Winker D M, Couch R H, Mccormick M P. An overview of LITE: NASA's Lidar in-space technology experiment [J]. Proceedings of the IEEE, 1996, 84(2): 164-180. doi:  10.1109/5.482227
[15] LITE: Measuring the atmosphere with laser precision [EB/OL]. (1994-08-01) [2018-03-30]. https://www.nasa.gov/centers/langley/news/factsheets/LITE.html.
[16] Matvienko G G. Modern concept of a spaceborne lidar[C]// International Symposium on Atmospheric and Ocean Optics. International Society for Optics and Photonics, 1999.
[17] NASA's Successful ice cloud and land elevation mission comes to an end [EB/OL]. (2010-08-27)[2018-05-31]. https://www.nasa.gov/mission_pages/icesat/icesat-end.html.
[18] Winker D M, Hostetler C A. Status and performance of the CALIOP lidar[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5575: 8-15.
[19] Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms [J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(11): 2310-2323.
[20] Stephens M, Weimer C, Lieber M. On-orbit models of the CALIOP lidar for enabling future mission design[C]// Earth Observing Systems XV. International Society for Optics and Photonics, 2010: 227-235.
[21] Chuang T, Burns P, Walters E B, et al. Space-based, multi-wavelength solid-state lasers for NASA's Cloud Aerosol Transport System for International Space Station (CATS-ISS)[C]//Solid State Lasers XXII: Technology and Devices, 2013: 8599: 85990N.
[22] Yorks J E, Mcgill M J, Nowottnick E P. Near real time vertical profiles of clouds and aerosols from the Cloud-Aerosol Transport System (CATS) on the international space station[C]// AGU Fall Meeting. AGU Fall Meeting Abstracts, 2015.
[23] Storm M, Stevenson G, Hovis F, et al. Lidar and laser technology for NASA’S Cloud-Aerosol Transport System (CATS) payload on the international space station (JEM-EF)[C]//EPJ Web of Conferences , 2016, 119: 04002.
[24] Forfinski-Sarkozi N A, Parrish C. Analysis of MABEL Bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS [J]. Remote Sensing, 2016, 8(9): 772. doi:  10.3390/rs8090772
[25] Lori A Magruder, Kelly M Brunt. Performance analysis of airborne photon-counting lidar data in preparation for the ICESat-2 mission [J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 99: 1-8.
[26] Nicholas Sawruk, Patrick M Burns, Ryan E Edwards, et al. ICESat-2 laser Nd: YVO4 amplifier[C]//Components and Packaging for Laser Systems IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2018.
[27] João P D C, Hélière A, Hors L L, et al. ATLID, ESA atmospheric LIDAR developement status[C]//EPJ Web of Conferences, 2016, 119: 04003.
[28] Hors L L, Toulemont Y, Hélière A. Design and development of the backscatter LIDAR ATLID for EarthCARE[C]// International Conference on Space Optics, 2017: 53.
[29] Hélière A, Hors L L, Toulemont Y. Development of ATLID, the earthcare UV backscatter lidar[C]//Society of Photo-Optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017: 27.
[30] Hélière A, Gelsthorpe R, Hors L L, et al. ATLID, the atmospheric lidar on board the Earthcare Satellite[C]// Society of Photo-Optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017: 81.
[31] Maring H, Bontempi P. Aerosol cloud ecosystem(ACE) decadal survey mission[R/OL]. (2010-11-16)[2018-01-25]. https://acemission.gsfc.nasa.gov/.
[32] Rout D, Chakrabarty D, Sarkhel S, et al. The ionospheric impact of an ICME driven sheath region over Indian and American sectors in the absence of a typical geomagnetic storm: ICME sheath region and PP electric field [J]. Journal of Geophysical Research: Space Physics, 2018, 123(5): 4298-4308. doi:  10.1029/2018JA025334
[33] Schmid B, Hlavka D, Spinhirne J, et al. Cloud Physics Lidar: instrument description and initial measurement results [J]. Applied Optics, 2002, 41(18): 3725-3734. doi:  10.1364/AO.41.003725
[34] Yorks J E, Mcgill M J, Scott V S, et al. The Airborne cloud–aerosol transport system: overview and description of the instrument and retrieval algorithms [J]. Journal of Atmospheric & Oceanic Technology, 2014, 31(11): 2482-2497.
[35] Sein E, Toulemont Y, Safa F, et al. A Φ 3.5 M SiC telescope for Herschel mission[C]//SPIE, 2003, 4850: 606-618.
[36] 王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学, 2018, 11(1): 131-151. doi:  10.3788/co.20181101.0131

Wang Zhi, Sha Wei, Chen Zhe, et al. Preliminary design and analysis of telescope for space gravitational wave [J]. Chinese Optics, 2018, 11(1): 131-151. (in Chinese) doi:  10.3788/co.20181101.0131
[37] 穆永吉, 万渊, 刘继桥, 等. 星载激光雷达望远镜主镜光机分析与优化[J]. 红外与激光工程, 2018, 47(7): 0718002. doi:  10.3788/IRLA201847.0718002

Mu Yongji, Wan Yuan, Liu Jiqiao, et al. Optomechanical analysis and optimization of spaceborne lidar telescope primary mirror [J]. Infrared and Laser Engineering, 2018, 47(7): 0718002. (in Chinese) doi:  10.3788/IRLA201847.0718002
[38] 赵海波, 赵伟国, 董吉洪, 等. 大型空间望远镜次镜调整机构精度分析与测试[J]. 光学 精密工程, 2019, 27(11): 2374-2383. doi:  10.3788/OPE.20192711.2374

Zhao Haibo, Zhao Weiguo, Dong Jihong, et al. Accuracy analysis and testing for secondary mirror adjusting mechanism in large space telescope [J]. Optics and Precision Engineering, 2019, 27(11): 2374-2383. (in Chinese) doi:  10.3788/OPE.20192711.2374
[39] Nixon C A, Achterberg R K, Adamkovics M, et al. Titan science with the James Webb Space Telescope (JWST) [J]. Publications of the Astronomical Society of the Pacific, 2016, 128(959): 018007. doi:  10.1088/1538-3873/128/959/018007
[40] 赵宏超, 张景旭, 杨飞, 等. 1.2 m望远镜次镜支撑结构设计[J]. 光学 精密工程, 2017, 25(10): 2614-2619. doi:  10.3788/OPE.20172510.2614

Zhao Hongchao, Zhang Jingxu, Yang Fei, et al. Secondary mirror supporting structure for 1.2 m telescope [J]. Editorial Office of Optics and Precision Engineering, 2017, 25(10): 2614-2619. (in Chinese) doi:  10.3788/OPE.20172510.2614