[1] Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations [J]. Science, 2008, 321(5894): 1335-1337. doi:  10.1126/science.1161030
[2] Su Jiaxin, Tong Cunzhu, Wang Lijie, et al. Beam waist shrinkage of high-power broad-area diode lasers by mode tailoring [J]. Optics Express, 2020, 28(9): 13131-13140. doi:  10.1364/OE.390265
[3] Bai Z, Yuan H, Liu Z, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review [J]. Optical Materials, 2018, 75: 626-645. doi:  10.1016/j.optmat.2017.10.035
[4] C̆erný Pavel, Helena Jelı́nková, Peter G Zverev, et al. Solid state lasers with Raman frequency conversion [J]. Progress in Quantum Electronics, 2004, 28(2): 113-143. doi:  10.1016/j.pquantelec.2003.09.003
[5] 白振旭, 王雨雷, 吕志伟, 等. 基于布里渊放大串行激光组束研究进展[J]. 激光与光电子学进展, 2015, 52(11): 110004.

Bai Zhenxu, Wang Yulei, Lv Zhiwei, et al. Research progress of serial laser beam combination based on stimulated Brillouin amplification [J]. Laser & Optoelectronics Progress, 2015, 52(11): 110004. (in Chinese)
[6] 何建国, 李明, 貊泽强, 等. 高功率板条激光介质的纵向强制对流换热技术[J]. 红外与激光工程, 2020, 49(9): 20200556. doi:  10.3788/IRLA20200556

He Jianguo, Li Ming, Mo Zeqiang, et al. Study on longitudinal forced convection heat transfer for high power slab media [J]. Infrared and Laser Engineering, 2020, 49(9): 20200556. (in Chinese) doi:  10.3788/IRLA20200556
[7] Weber R, Neuenschwander B, Weber H P. Thermal effects in solid-state laser materials [J]. Optical Materials, 1999, 11(2-3): 245-254. doi:  10.1016/S0925-3467(98)00047-0
[8] Chénais S, Druon F, Forget S, et al. On thermal effects in solid state lasers: The case of ytterbium-doped materials [J]. Progress in Quantum Electronics, 2006, 30(4): 89-153. doi:  10.1016/j.pquantelec.2006.12.001
[9] Söderlund M J, Ponsoda J J M, Koplow J P, et al. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling [J]. Optics Express, 2009, 17(12): 9940-9946. doi:  10.1364/OE.17.009940
[10] Shen D Y, Sahu J K, Clarkson W A. Highly efficient in-band pumped Er: YAG laser with 60 W of output at 1645 nm [J]. Optics Letters, 2006, 31(6): 754-756. doi:  10.1364/OL.31.000754
[11] Ichikawa Hiromasa, Yamaguchi Kohki, Katsumata Tomo, et al. High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding [J]. Optics Express, 2017, 25(19): 22797-22804. doi:  10.1364/OE.25.022797
[12] 王辉华, 林龙信, 叶辛. 高功率板条激光技术现状与发展趋势[J]. 红外与激光工程, 2020, 49(7): 20190456. doi:  10.3788/IRLA20190456

Wang Huihua, Lin Longxin, Ye Xin. Progress and tendency of high power slab lasers [J]. Infrared and Laser Engineering, 2020, 49(7): 20190456. (in Chinese) doi:  10.3788/IRLA20190456
[13] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers [J]. Nature photonics, 2013, 7(11): 861-867. doi:  10.1038/nphoton.2013.273
[14] 王菲. 高稳定度光泵浦腔内倍频488 nm半导体薄片激光器[J]. 红外与激光工程, 2019, 48(6): 0606004. doi:  10.3788/IRLA201948.0606004

Wang Fei. High stability 488 nm light generated by intra-cavity frequency doubling in optically pumped semiconductor disc lasers [J]. Infrared and Laser Engineering, 2019, 48(6): 0606004. (in Chinese) doi:  10.3788/IRLA201948.0606004
[15] Ripin D J, Ochoa J R, Aggarwal R L, et al. 165-W cryogenically cooled Yb: YAG laser [J]. Optics Letters, 2004, 29(18): 2154-2156. doi:  10.1364/OL.29.002154
[16] Feve J P M, Shortoff K E, Bohn M J, et al. High average power diamond Raman laser [J]. Optics Express, 2011, 19(2): 913-922. doi:  10.1364/OE.19.000913
[17] Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array [J]. Optics Letters, 2008, 33(4): 354-356. doi:  10.1364/OL.33.000354
[18] Zhou Pu, Liu Zejin, Wang Xiaolin, et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application [J]. IEEE Journal of Selected Topics In Quantum Electronics, 2009, 15(2): 248-256. doi:  10.1109/JSTQE.2008.2010231
[19] Cui C, Wang Y, Lu Z, et al. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification [J]. Optics Express, 2018, 26(25): 32717-32727. doi:  10.1364/OE.26.032717
[20] https://www.e6.com/en/products/optics.
[21] http://www.diamond-materials.com/.
[22] 王仕发, 李丹明, 肖玉华, 等. 用于空间辐射环境探测的金刚石探测器研究综述[J]. 材料导报A: 综述篇, 2018, 32(5): 1459-1468.

Wang Shifa, Li Danming, Xiao Yuhua, et al. Diamond radiation detector used for space radiation detection: a state-of-art review [J]. Materials Reports A, 2018, 32(5): 1459-1468. (in Chinese)
[23] Bassett W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163-186. doi:  10.1080/08957950802597239
[24] Mildren R P, Rabeau J R. Optical Engineering of Diamond (MILDREN: DIAMOND OPTICS O-BK) || Intrinsic Optical Properties of Diamond[M]. Germany, Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.
[25] 白振旭. 高功率金刚石拉曼激光器亮度增强技术及金刚石布里渊激光器研究[D]. 哈尔滨工业大学, 2018.
[26] Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1602214.
[27] Bai Z, Williams R J, Kitzler O, et al. Diamond Brillouin laser in the visible [J]. APL Photonics, 2020, 5(3): 031301. doi:  10.1063/1.5134907
[28] Mckay A, Kitzler O, Mildren R P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser [J]. Laser & Photonics Review, 2014, 8(3): L37-L41.
[29] Tennant Smithson. On the nature of the diamond[J]. Philosophical Transactions of the Royal Society of London. 1979, 87: 123–127.
[30] Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond for novel laser applications[C]//In Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology, 2010, 7838: 783819.
[31] Martineau P M, Gaukroger M P, Guy K B, et al. High crystalline quality single crystal chemical vapour deposition diamond [J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364205. doi:  10.1088/0953-8984/21/36/364205
[32] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser [J]. Optics Express, 2011, 19(11): 10857-10863. doi:  10.1364/OE.19.010857
[33] Mildren R P, Butler J E, Rabeau J R. CVD-diamond external cavity Raman laser at 573 nm [J]. Optics Express, 2008, 16(23): 18950-18955. doi:  10.1364/OE.16.018950
[34] Mildren R P, Sabella A. Highly efficient diamond Raman laser [J]. Optics Letters, 2009, 34(18): 2811-2813. doi:  10.1364/OL.34.002811
[35] Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit [J]. Optics Letters, 2010, 35(23): 3874-3876. doi:  10.1364/OL.35.003874
[36] Sabella A, Piper J A, Mildren R P. Efficient conversion of a 1.064 μm Nd: YAG laser to the eye-safe region using a diamond Raman laser [J]. Optics Express, 2011, 19(23): 23554-23560. doi:  10.1364/OE.19.023554
[37] Jelínek M, Kitzler O, Jelínková H, et al. CVD‐diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd: YAP laser [J]. Laser Physics Letters, 2012, 9(1): 35-38. doi:  10.1002/lapl.201110093
[38] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm [J]. Optics Letters, 2014, 39(13): 4037-4040. doi:  10.1364/OL.39.004037
[39] Antipov S, Sabella A, Williams R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam [J]. Optics Letters, 2019, 44(10): 2506-2509. doi:  10.1364/OL.44.002506
[40] Spence D J, Granados E, Mildren R P. Mode-locked picosecond diamond Raman laser [J]. Optics Letters, 2010, 35(4): 556-558. doi:  10.1364/OL.35.000556
[41] Murtagh M, Lin J, Mildren R P, et al. Efficient diamond Raman laser generating 65 fs pulses [J]. Optics Express, 2015, 23(12): 15504-15513. doi:  10.1364/OE.23.015504
[42] Murtagh M, Lin J, Mildren R P, et al. Ti: sapphire-pumped diamond Raman laser with sub-100-fs pulse duration [J]. Optics Letters, 2014, 39(10): 2975-2978. doi:  10.1364/OL.39.002975
[43] Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain [J]. Optica, 2016, 3(8): 876-881. doi:  10.1364/OPTICA.3.000876
[44] Yang X, Kitzler O, Spence D J, et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain [J]. Optics Letters, 2019, 44(4): 839-842. doi:  10.1364/OL.44.000839
[45] Yang X, Kitzler O, Spence D J, et al. Diamond sodium guide star laser [J]. Optics Letters, 2020, 45(7): 1898-1901. doi:  10.1364/OL.387879
[46] Sarang S, Kitzler O, Lux O, et al. Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain [J]. OSA Continuum, 2019, 2(4): 1028-1038. doi:  10.1364/OSAC.2.001028
[47] Kitzler O, Lin J, Helen M P, et al. Single-longitudinal-mode ring diamond Raman laser [J]. Optics Letters, 2017, 42(7): 1229-1232. doi:  10.1364/OL.42.001229
[48] Latawiec P, Venkataraman V, Burek M J, et al. On-chip diamond Raman laser [J]. Optica, 2015, 2(11): 924-928. doi:  10.1364/OPTICA.2.000924
[49] Reilly S, Savitski V G, Liu H, et al. Monolithic diamond Raman laser [J]. Optics Letters, 2015, 40(6): 930-933. doi:  10.1364/OL.40.000930
[50] McKay A, Spence D J, Coutts D W, et al. Diamond‐based concept for combining beams at very high average powers [J]. Laser & Photonics Reviews, 2017, 11(3): 1600130.
[51] Williams R J, Bai Z, Sarang S, et al. Diamond Brillouin lasers [J]. arXiv preprint, 2018, arXiv: 1807.00240.
[52] Bai Z, Williams R J, Kitzler O, et al. Observation of stimulated Brillouin scattering and Brillouin frequency comb generation in diamond[C]//CLEO: QELS_Fundamental Science, 2018, FF3E-7.
[53] Kamo M, Matsumoto S, Sato Y, et al. Nobuo SetakaMethod for synthesizing diamond[P]. US4434188A.
[54] Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds [J]. Nature, 1955, 176(4471): 51-55. doi:  10.1038/176051a0
[55] Maiman T H. Stimulated optical radiation in ruby [J]. Nature, 1960, 187(4736): 493-494. doi:  10.1038/187493a0
[56] Ng W K, Woodbury E J. Ruby laser operation in near IR[C]//Proceedings of the Institute of Radio Engineers, 1962, 50: 2367.
[57] Eckhardt G, Hellwarth R W, McClung F J, et al. Stimulated Raman scattering from organic liquids [J]. Physical Review Letters, 1962, 9(11): 455-457. doi:  10.1103/PhysRevLett.9.455
[58] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves [J]. Physical Review Letters, 1964, 12(21): 592-595. doi:  10.1103/PhysRevLett.12.592
[59] Grimsditch M H, Ramdas A K. Brillouin scattering in diamond [J]. Physical Review B, 1975, 11(8): 3139-3148. doi:  10.1103/PhysRevB.11.3139
[60] Kaminskii A A, Ralchenko V G E, Konov V I. Observation of stimulated Raman scattering in CVD-diamond [J]. Journal of Experimental and Theoretical Physics Letters, 2004, 80(4): 267-270. doi:  10.1134/1.1813684
[61] Parrotta D C, Kemp A J, Dawson M D, et al. Tunable continuous-wave diamond Raman laser [J]. Optics Express, 2011, 19(24): 24165-24170. doi:  10.1364/OE.19.024165
[62] Sergei Antipov, Robert J. Williams, Alexander Sabella, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power [J]. Optics Express, 2020, 28(10): 15232-15239. doi:  10.1364/OE.388794
[63] Li M, Kitzler O, Spence D J. Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser [J]. Optics Express, 2020, 28(2): 1738-1744. doi:  10.1364/OE.380644
[64] Ditchburn R W. Diamond as an optical material for space optics [J]. Optica Acta: International Journal of Optics, 1982, 29(4): 355-359. doi:  10.1080/713820872
[65] Klein C A. Diamond windows for IR applications in adverse environments [J]. Diamond and Related Materials, 1993, 2(5-7): 1024-1032. doi:  10.1016/0925-9635(93)90268-7
[66] 王伟华, 代冰, 王杨, 等. 金刚石光学窗口相关元件的研究进展[J]. 材料科学与工艺, 2020, 28(3): 42-57. doi:  10.11951/j.issn.1005-0299.20200074

Wang Weihua, Dai Bing, Wang Yang, et al. Recent progress of diamond optical window-related components [J]. Materials Science and Technology, 2020, 28(3): 42-57. (in Chinese) doi:  10.11951/j.issn.1005-0299.20200074
[67] Goss J P, Briddon P R, Rayson M J, et al. Vacancy-impurity complexes and limitations for implantation doping of diamond [J]. Physical Review B, 2005, 72(3): 035214. doi:  10.1103/PhysRevB.72.035214
[68] Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond for novel laser applications[C]//Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII, 2010, 7838: 783819.
[69] Piper J A, Pask H M. Crystalline raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704. doi:  10.1109/JSTQE.2007.897175
[70] 白振旭, 陈晖, 李宇琪, 等. 基于金刚石拉曼转换的光束亮度增强研究进展[J]. 红外与激光工程, 出版中.

Bai Zhenxu, Chen Hui, Li Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared and Laser Engineering, in press (in Chinese).
[71] Williams R J, Kitzler O, Mckay A, et al. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping [J]. Optics Letters, 2014, 39(14): 4152-4155. doi:  10.1364/OL.39.004152
[72] Williams R J, Spence D J, Lux O, et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond [J]. Optics Express, 2017, 25(2): 749-757. doi:  10.1364/OE.25.000749
[73] Heinzig M, Walbaum T, Williams R J, et al. High-power single-pass pumped diamond Raman laser[C]//Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017, CA_11_5.
[74] Kitzler O, Mckay A, Mildren R P. Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser [J]. Optics Letters, 2012, 37(14): 2790-2792. doi:  10.1364/OL.37.002790
[75] Savitski V G, Friel I, Hastie J E, et al. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers [J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 328-337. doi:  10.1109/JQE.2011.2179917
[76] Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser & Photonics Reviews, 2015, 9(4): 405-411.
[77] Lux O, Sarang S, Williams R J, et al. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection [J]. Optics Express, 2016, 24(24): 27812-27820. doi:  10.1364/OE.24.027812
[78] Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation [J]. Optics Letters, 1997, 22(6): 375-377. doi:  10.1364/OL.22.000375
[79] Lai W, Ma P, Liu W, et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber [J]. Optics Express, 2020, 28(14): 20908-20919. doi:  10.1364/OE.395619
[80] Bai Z, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion [J]. Optics Letters, 2018, 43(3): 563-566. doi:  10.1364/OL.43.000563
[81] Bai Z, Williams R. J., Kitzler Ondrej, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement [J]. Optics Express, 2018, 26(16): 19797-19803. doi:  10.1364/OE.26.019797
[82] Bai Z, Zhao C, Qi Y, et al. Towards long-wave infrared lasing by diamond Raman conversion[C]//Conference on Lasers and Electro-optics/Pacific Rim, 2020, 1-2.