[1] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source [J]. Physical Review Letters, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[2] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation [J]. Physical Review Letters, 2004, 93(9): 093602. doi:  10.1103/PhysRevLett.93.093602
[3] Gatti A, Brambilla E, Bache M, et al. Correlated imaging, quantum and classical [J]. Physical Review A, 2004, 70(1): 013802. doi:  10.1103/PhysRevA.70.013802
[4] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction [J]. Physical Review Letters, 2004, 92(9): 093903. doi:  10.1103/PhysRevLett.92.093903
[5] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429. doi:  10.1103/PhysRevA.52.R3429
[6] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603. doi:  10.1103/PhysRevLett.104.253603
[7] Sun B, Welsh S S, Edgar M P, et al. Normalized ghost imaging [J]. Optics Express, 2012, 20(15): 16892−16901. doi:  10.1364/OE.20.016892
[8] Chan K W C, O'Sullivan M N, Boyd R W. High-order thermal ghost imaging [J]. Optics Letters, 2009, 34(21): 3343−3345. doi:  10.1364/OL.34.003343
[9] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging [J]. Applied Physics Letters, 2011, 98(11): 111115. doi:  10.1063/1.3567931
[10] Meyers R E, Deacon K S, Shih Y. Positive-negative turbulence-free ghost imaging [J]. Applied Physics Letters, 2012, 100(13): 131114. doi:  10.1063/1.3698158
[11] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints [J]. Applied Physics Letters, 2012, 101(14): 141123. doi:  10.1063/1.4757874
[12] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802. doi:  10.1103/PhysRevA.78.061802
[13] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840. doi:  10.1103/PhysRevA.79.053840
[14] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors [J]. Science, 2013, 340(6134): 844−847. doi:  10.1126/science.1234454
[15] Zhang L, Lin Z, He R, et al. Improving the noise immunity of 3D computational ghost imaging [J]. Optics Express, 2019, 27(3): 2344−2353. doi:  10.1364/OE.27.002344
[16] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution [J]. Nature Communications, 2016, 7(1): 1−6. doi:  10.1038/ncomms12010
[17] Yang X, Zhao Y. Distance measurement by computational ghost imaging [J]. Optik, 2013, 124(22): 5882−5884. doi:  10.1016/j.ijleo.2013.04.130
[18] Wu H, Zhang X, Gan J, et al. High-quality computational ghost imaging using an optimum distance search method [J]. IEEE Photonics Journal, 2016, 8(6): 1−9.
[19] Ilhan H A, Doğar M, Özcan M. Digital holographic microscopy and focusing methods based on image sharpness [J]. Journal of Microscopy, 2014, 255(3): 138−149. doi:  10.1111/jmi.12144
[20] Wang W, Wang Y P, Li J, et al. Iterative ghost imaging [J]. Optics Letters, 2014, 39(17): 5150−5153. doi:  10.1364/OL.39.005150
[21] Cerbino R. Correlations of light in the deep Fresnel region: An extended Van Cittert and Zernike theorem [J]. Physical Review A, 2007, 75(5): 053815. doi:  10.1103/PhysRevA.75.053815
[22] He R, Lin Z, Zhang W, et al. Auto-focusing method for computational ghost imaging system in deep-Fresnel region [J]. Journal of Optics, 2018, 20(9): 095607. doi:  10.1088/2040-8986/aad879
[23] Vollath D. The influence of the scene parameters and of noise on the behaviour of automatic focusing algorithms [J]. Journal of Microscopy, 1988, 151(2): 133−146. doi:  10.1111/j.1365-2818.1988.tb04620.x
[24] Goodman J W. (2005) Introduction to Fourier Optics[M]. 3rd ed. Colorado: Roberts & Company Publishers.
[25] Ferri F, Magatti D, Sala V G, et al. Longitudinal coherence in thermal ghost imaging [J]. Applied Physics Letters, 2008, 92(26): 261109. doi:  10.1063/1.2945642
[26] Adams R, Bischof L. Seeded region growing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6): 641−647. doi:  10.1109/34.295913
[27] Mehnert A, Jackway P. An improved seeded region growing algorithm [J]. Pattern Recognition Letters, 1997, 18(10): 1065−1071. doi:  10.1016/S0167-8655(97)00131-1
[28] Zhu S C, Yuille A. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation [J]. IEEE transactions on pattern analysis and machine intelligence, 1996, 18(9): 884−900. doi:  10.1109/34.537343