[1] Cai Z C, Zhu L, Wang M Q, et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates [J]. Theranostics, 2020, 10(9): 4265-4276. doi:  10.7150/thno.43533
[2] Pettit E J, Hallett M B. Dynamic imaging of cytosolic free Ca2+ in human neutrophils using confocal laser scanning microscopy [J]. Cell Biology International, 1997, 21(10): 649-654. doi:  10.1006/cbir.1997.0155
[3] Panzer J A, Song Y Q, Balice-Gordon R J. In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle [J]. Journal of Neuroscience, 2006, 26(3): 934-947. doi:  10.1523/JNEUROSCI.3656-05.2006
[4] Forest F, Cinotti E, Yvorel V, et al. Ex vivo confocal microscopy imaging to identify tumor tissue on freshly removed brain sample [J]. Journal of Neuro-oncology, 2015, 124(2): 157-164. doi:  10.1007/s11060-015-1832-z
[5] Kim H M, Lee D K, Long N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans [J]. Environmental Pollution, 2019, 246: 578-586. doi:  10.1016/j.envpol.2018.12.043
[6] Welsher K, Liu Z, Sherlock S P, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice [J]. Nature Nanotechnology, 2009, 4(11): 773-780. doi:  10.1038/nnano.2009.294
[7] Feng Z, Tang T, Wu T X, et al. Perfecting and extending the near-infrared imaging window [J]. Light-Science & Appli-cations, 2021, 10(1): 197.
[8] Zhu S J, Yang Q L, Antaris A L, et al. Molecular imaging of biological systems with a clickable dye in the broad 800-to 1,700-nm near-infrared window [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 962-967. doi:  10.1073/pnas.1617990114
[9] Feng Z, Yu X M, Jiang M X, et al. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor [J]. Theranostics, 2019, 9(19): 5706-5719. doi:  10.7150/thno.31332
[10] Qi J, Sun C W, Zebibula A, et al. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region [J]. Advanced Materials, 2018, 30(12): e1706856. doi:  10.1002/adma.201706856
[11] Li C, Li F, Zhang Y, et al. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot [J]. ACS Nano, 2015, 9(12): 12255-12263. doi:  10.1021/acsnano.5b05503
[12] Bruns O T, Bischof T S, Harris D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots [J]. Nature Biomedical Engineering, 2017, 1(4): 56. doi:  10.1038/s41551-017-0056
[13] He Y, Wang S F, Yu P, et al. NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics [J]. Chemical Science, 2021, 12(31): 10474-10482. doi:  10.1039/D1SC02763H
[14] Feng Zhe, Qian Jun. Advances on in vivo fluorescence bioimaging in the second near-infrared window [J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617001. (in Chinese)
[15] Minsky M. Memoir on inventing the confocal scanning microscope [J]. Scanning, 1988, 10(4): 128-138. doi:  10.1002/sca.4950100403
[16] Egger M D, Petráň M. New reflected-light microscope for viewing unstained brain and ganglion cells [J]. Science, 1967, 157(3786): 305-307. doi:  10.1126/science.157.3786.305
[17] Wilson T. Imaging properties and applications of scanning optical microscopes [J]. Applied Physics, 1980, 22(2): 119-128. doi:  10.1007/BF00885994
[18] Frigault M M, Lacoste J, Swift J L, et al. Live cell imaging: Tips and tools [J]. Biophysical Journal, 2009, 96(3): 30A.
[19] Waters J C. Chapter 6 Live-Cell Fluorescence Imaging[M]//Sluder G, Wolf D E. Methods in Cell Biology. Salt Lake City, UT, USA: Academic Press, 2013: 114, 125-150.
[20] Lacoste J, Young K, Brown C M. Live-cell migration and adhesion turnover assays [J]. Methods in Molecular Biology, 2013, 931: 61-84.
[21] Nagerl U V, Willig K I, Hein B, et al. Live-cell imaging of dendriticspines by STED microscopy [J]. PNAS, 2008, 105(48): 18982-18987. doi:  10.1073/pnas.0810028105
[22] Cabrera J, Olmo R, Ruiz-Ferrer V, et al. A phenotyping method of giant cells from root-knot nematode feeding sites by confocal microscopy highlights a role for CHITINASE-LIKE 1 in arabidopsis [J]. International Journal of Molecular Sciences, 2018, 19(2): 429. doi:  10.3390/ijms19020429
[23] Shen Jiaxin, Chen Yaowen, Han Taizhen. Confocal imaging of Ca2+ transients and cell contractions simultianeously in heart cells [J]. Acta Laser Biology Sinica, 2004, 13(3): 182-185.
[24] O'Connell K F, Golden A. Confocal Imaging of the Microtubule Cytoskeleton in C. elegans Embryos and Germ Cells[M]//Paddock S W. Confocal Microscopy: Methods and Protocols. New York, NY: Springer, 2014, 1075: 257-272.
[25] Chisholm K I, Ida K K, Davies A L, et al. In vivo imaging of flavoprotein fluorescence during hypoxia reveals the importance of direct arterial oxygen supply to cerebral cortex tissue [J]. Adv Exp Med Biol, 2016, 876: 233-239. doi:  10.1007/978-1-4939-3023-4_29
[26] Chu L L, Wang S W, Li K H, et al. Biocompatible near-infrared fluorescent nanoparticles for macro and microscopic in vivo functional bioimaging [J]. Biomedical Optics Express, 2014, 5(11): 4076-4088. doi:  10.1364/BOE.5.004076
[27] Jonkman J, Brown C M. Any way you slice it-A comparison of confocal microscopy techniques [J]. Journal of Biomolecular Techniques: JBT, 2015, 26(2): 54-65. doi:  10.7171/jbt.15-2602-003
[28] Nipkow P. Electric telescope: Germany: 30105[P]. 1885-01-15.
[29] Petran M, Hadravsky M, Egger M D, et al. Tandem-scanning reflected-light microscope [J]. Journal of the Optical Society of America, 1968, 58(5): 661. doi:  10.1364/JOSA.58.000661
[30] Zhang Yanli, Dai Yali, Chen Yalan, et al. New methods for rapid experiment using spinning disk confocal microscope [J]. Progress in Modern Biomedicine, 2019, 19(19): 3784-3788. (in Chinese) doi:  10.13241/j.cnki.pmb.2019.19.043
[31] Zubkovs V, Antonucci A, Schuergers N, et al. Spinning-disc confocal microscopy in the second near-infrared window (NIR-II) [J]. Scientific Reports, 2018, 8(1): 13770. doi:  10.1038/s41598-018-31928-y
[32] Zhu S J, Herraiz S, Yue J Y, et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates [J]. Advances Materials, 2018, 30(13): e1705799. doi:  10.1002/adma.201705799
[33] Wan H, Yue J Y, Zhu S J, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues [J]. Nature Communications, 2018, 9(1): 1171. doi:  10.1038/s41467-018-03505-4
[34] Yu X, Feng Z, Cai Z, et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy [J]. Journal of Materials Chemistry B, 2019, 7(42): 6623-6629. doi:  10.1039/C9TB01381D
[35] Yu W B, Guo B, Zhang H Q, et al. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots [J]. Science Bulletin, 2019, 64(6): 410-416. doi:  10.1016/j.scib.2019.02.019
[36] Qian J, Tang B Z. AIE luminogens for bioimaging and theranostics: From organelles to animals [J]. Chem, 2017, 3(1): 56-91. doi:  10.1016/j.chempr.2017.05.010
[37] Luo J D, Xie Z L, Lam J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole [J]. Chemical Communications, 2001(18): 1740-1741. doi:  10.1039/b105159h
[38] Hubel D H, Wiesel T N. Ferrier lecture. Functional architecture of macaque monkey visual cortex [J]. Proceedings of the Royal Society of London Series Biological Sciences, 1977, 198(1130): 1-59. doi:  10.1098/rspb.1977.0085
[39] Rakic P. Specification of cerebral cortical areas [J]. Science, 1988, 241(4862): 170-176. doi:  10.1126/science.3291116
[40] Que Bujun, Peng Shiyi, Geng Weihang, et al. The fluorescence in vivo wide-field microscopic imaging technology and application in the second near-infrared region [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 166-183. (in Chinese) doi:  10.11972/j.issn.1001-9014.2022.01.013
[41] Zhang M, Yue J, Cui R, et al. Bright quantum dots emitting at ~1, 600 nm in the NIR-IIb window for deep tissue fluorescence imaging [J]. Proceedings of the National Academy of Sciences, 2018, 115(26): 6590-6595. doi:  10.1073/pnas.1806153115
[42] Xia F, Wu C, Sinefeld D, et al. In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination [J]. Biomedical Optics Express, 2018, 9(12): 6545-6555. doi:  10.1364/BOE.9.006545
[43] You L X. Superconducting nanowire single-photon detectors for quantum information [J]. Nanophotonics, 2020, 9(9): 2673-2692. doi:  10.1515/nanoph-2020-0186
[44] Kadin A M, Johnson M W. Nonequilibrium photon induced hotspot: A new mechanism for photo detection inultrathin metallic films [J]. Applied Physics Letters, 1996, 69(25): 3938-3940. doi:  10.1063/1.117576
[45] Gol'Tsman G N, Okunev O, Chulkova G, et al. Picosecond superconducting single-photon optical detector [J]. Applied Physics Letters, 2001, 79(6): 705-707. doi:  10.1063/1.1388868
[46] You Lixing. A powerful tool for quantum information ——superconducting nanowire single-photon detectors [J]. Physics, 2021, 50(10): 678-683. (in Chinese) doi:  10.7693/wl20211004
[47] Reddy D V, Lita A E, Nam S W, et al. Achieving 98% system efficiency at 1550 nm in superconducting nanowire single photon detectors[C]//Rochester Conference on Coherence and Quantum Optics, 2019.
[48] Hu P, Li H, You L, et al. Detecting single infrared photons toward optimal system detection efficiency [J]. Optics Express, 2020, 28(24): 36884-36891. doi:  10.1364/OE.410025
[49] Reddy D V, Nerem R R, Nam S W, et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550  nm [J]. Optica, 2020, 7(12): 1649-1653. doi:  10.1364/OPTICA.400751
[50] Chang J, Los J, Tenorio-Pearl J O, et al. Detecting telecom single photons with (99.5(-2.07)(+0.5))% system detection efficiency and high time resolution [J]. APL Photonics, 2021, 6(3): 036114. doi:  10.1063/5.0039772
[51] Liao J L, Yin Y X, Yu J, et al. Depth-resolved NIR-II fluorescence mesoscope [J]. Biomedical Optics Express, 2020, 11(5): 2366-2372. doi:  10.1364/BOE.386692
[52] Xia F, Gevers M, Fognini A, et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector [J]. ACS Photonics, 2021, 8(9): 2800-2810. doi:  10.1021/acsphotonics.1c01018
[53] Wang F, Ren F, Ma Z, et al. In vivo non-invasive confocal fluorescence imaging beyond 1, 700 nm using superconducting nanowire single-photon detectors [J]. Nature Nanotechnology, 2022, 17(6): 653-660. doi:  10.1038/s41565-022-01130-3
[54] Yu J, Zhang R L, Gao Y F, et al. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window [J]. Optics Letters, 2020, 45(12): 3305-3308. doi:  10.1364/OL.394684
[55] Mao Yan, Tao Louis, Chen Liangyi. Application and development of adaptive optics to three-dimensional in vivo deep tissue fluorescent microscopy [J]. Infrared and Laser Engineering, 2016, 45(6): 0602001. (in Chinese) doi:  10.3788/IRLA201645.0602001
[56] Wang Huawei, Cao Jianzhong, Ma Caiwen, et al. Design of infrared imaging system with adaptive correction function [J]. Infrared and Laser Engineering, 2014, 43(1): 61-66. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.01.010