[1] Huang K. Lattice vibrations and optical waves in ionic crystals [J]. Nature, 1951, 167(4254): 779-780.
[2] Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals [J]. Physical Review Letters, 1958, 1(11): 427-428. doi:  10.1103/PhysRev.112.1555
[3] Weisbuch C, Nishioka M, Ishikawa A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity [J]. Physical Review Letters, 1992, 69(23): 3314-3317. doi:  10.1103/PhysRevLett.69.3314
[4] Kasprzak J, Richard M, Kundermann S, et al. Bose-einstein condensation of exciton polaritons [J]. Nature, 2006, 443(7110): 409-414. doi:  10.1038/nature05131
[5] Balili R, Hartwell V, Snoke D, et al. Bose-einstein condensation of microcavity polaritons in a trap [J]. Science, 2007, 316(5827): 1007-1010. doi:  10.1126/science.1140990
[6] Zhang S, Zhong Y G, Yang F, et al. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction [J]. Photonics Research, 2020, 8(11): A72-A90. doi:  10.1364/PRJ.400259
[7] Lerario G, Fieramosca A, Barachati F, et al. Room-temperature superfluidity in a polariton condensate [J]. Nature Physics, 2017, 13(9): 837-842. doi:  10.1038/nphys4147
[8] Dominici L, Dagvadorj G, Fellows J M, et al. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid [J]. Sci Adv, 2015, 1(11): e1500807. doi:  10.1126/sciadv.1500807
[9] Zhang S, Chen J, Shi J, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity [J]. ACS Photonics, 2020, 7(2): 327-337. doi:  10.1021/acsphotonics.9b01240
[10] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (cspbx(3), x=cl, br, and i): Novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett, 2015, 15(6): 3692-3696. doi:  10.1021/nl5048779
[11] Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers [J]. Nano Lett, 2014, 14(10): 5995-6001. doi:  10.1021/nl503057g
[12] Weiner J S, Yu P Y. Free carrier lifetime in semi-insulating gaas from time-resolved band-to-band photoluminescence [J]. Journal of Applied Physics, 1984, 55(10): 3889-3891. doi:  10.1063/1.332907
[13] Zhao X H, DiNezza M J, Liu S, et al. Determination of cdte bulk carrier lifetime and interface recombination velocity of cdte/mgcdte double heterostructures grown by molecular beam epitaxy [J]. Applied Physics Letters, 2014, 105(25): 252101. doi:  10.1063/1.4904993
[14] Rosenwaks Y, Shapira Y, Huppert D. Metal reactivity effects on the surface recombination velocity at inp interfaces [J]. Applied Physics Letters, 1990, 57(24): 2552-2554. doi:  10.1063/1.103814
[15] Ahrenkiel R K. Measurement of minority-carrier lifetime by time-resolved photoluminescence [J]. Solid-State Electronics, 1992, 35(3): 239-250. doi:  10.1016/0038-1101(92)90228-5
[16] Zhang Q, Su R, Liu X F, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets [J]. Advanced Functional Materials, 2016, 26(34): 6238-6245. doi:  10.1002/adfm.201601690
[17] Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets [J]. Nano Lett, 2017, 17(6): 3982-3988. doi:  10.1021/acs.nanolett.7b01956
[18] Hu J, Yan L, You W. Two-dimensional organic-inorganic hybrid perovskites: A new platform for optoelectronic applications [J]. Adv Mater, 2018, 30(48): e1802041. doi:  10.1002/adma.201802041
[19] Mao L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: Principles and promises [J]. J Am Chem Soc, 2019, 141(3): 1171-1190. doi:  10.1021/jacs.8b10851
[20] Saparov B, Mitzi D B. Organic-inorganic perovskites: Structural versatility for functional materials design [J]. Chem Rev, 2016, 116(7): 4558-4596. doi:  10.1021/acs.chemrev.5b00715
[21] Fujita T, Sato Y, Kuitani T, et al. Tunable polariton absorption of distributed feedback microcavities at room temperature [J]. Physical Review B, 1998, 57(19): 12428. doi:  10.1103/PhysRevB.57.12428
[22] Brehier A, Parashkov R, Lauret J S, et al. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors [J]. Applied Physics Letters, 2006, 89(17): 171110. doi:  https://doi.org/10.1063/1.2369533
[23] Wenus J, Parashkov R, Ceccarelli S, et al. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity [J]. Physical Review B, 2006, 74(23): 235212. doi:  https://doi.org/10.1103/PhysRevB.74.235212
[24] Lanty G, Zhang S, Lauret J S, et al. Hybrid cavity polaritons in a zno-perovskite microcavity [J]. Physical Review B, 2011, 84(19): 195449. doi:  https://doi.org/10.1103/PhysRevB.84.195449
[25] Fieramosca A, De Marco L, Passoni M, et al. Tunable out-of-plane excitons in 2D single-crystal perovskites [J]. ACS Photonics, 2018, 5(10): 4179-4185. doi:  10.1021/acsphotonics.8b00984
[26] Fieramosca A, Polimeno L, Ardizzone V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature [J]. Sci Adv, 2019, 5(5): eaav9967. doi:  10.1126/sciadv.aav9967
[27] Polimeno L, Fieramosca A, Lerario G, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites [J]. Advanced Optical Materials, 2020, 8(16): 2000176. doi:  https://doi.org/10.1002/adom.202000176
[28] Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nat Mater, 2015, 14(6): 636-642. doi:  10.1038/nmat4271
[29] Zhou H, Yuan S, Wang X, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section [J]. ACS Nano, 2017, 11(2): 1189-1195. doi:  10.1021/acsnano.6b07374
[30] Park K, Lee J W, Kim J D, et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers [J]. J Phys Chem Lett, 2016, 7(18): 3703-3710. doi:  10.1021/acs.jpclett.6b01821
[31] Zhang S, Shang Q Y, Du W N, et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/-nanowires [J]. Advanced Optical Materials, 2018, 6(2): 1701032. doi:  https://doi.org/10.1002/adom.201701032
[32] Du W N, Zhang S, Shi J, et al. Strong exciton-photon coupling and lasing behavior in all-inorganic cspbbr3 micro/nanowire fabry-perot cavity [J]. ACS Photonics, 2018, 5(5): 2051-2059. doi:  10.1021/acsphotonics.7b01593
[33] Shang Q, Li C, Zhang S, et al. Enhanced optical absorption and slowed light of reduced-dimensional cspbbr3 nanowire crystal by exciton-polariton [J]. Nano Lett, 2020, 20(2): 1023-1032. doi:  10.1021/acs.nanolett.9b04175
[34] Evans T J S, Schlaus A, Fu Y, et al. Continuous‐wave lasing in cesium lead bromide perovskite nanowires [J]. Advanced Optical Materials, 2017, 6(2): 1700982. doi:  https://doi.org/10.1002/adom.201700982
[35] Shang Q, Li M, Zhao L, et al. Role of the exciton-polariton in a continuous-wave optically pumped cspbbr3 perovskite laser [J]. Nano Lett, 2020, 20(9): 6636-6643. doi:  10.1021/acs.nanolett.0c02462
[36] Su R, Wang J, Zhao J, et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites [J]. Sci Adv, 2018, 4(10): eaau0244. doi:  10.1126/sciadv.aau0244
[37] Su R, Ghosh S, Wang J, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature [J]. Nature Physics, 2020, 16(3): 301-306. doi:  10.1038/s41567-019-0764-5
[38] Wang J, Xu H, Su R, et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities [J]. Light Sci Appl, 2021, 10(1): 45. doi:  10.1038/s41377-021-00478-w
[39] Su R, Ghosh S, Liew T C H, et al. Optical switching of topological phase in a perovskite polariton lattice [J]. Sci Adv, 2021, 7(21): eabf8049. doi:  10.1126/sciadv.abf8049
[40] Baumberg J J, Savvidis P G, Stevenson R M, et al. Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation [J]. Physical Review B, 2000, 62(24): 16247-16250. doi:  10.1103/PhysRevB.62.R16247
[41] Savvidis P G, Baumberg J J, Stevenson R M, et al. Angle-resonant stimulated polariton amplifier [J]. Phys Rev Lett, 2000, 84(7): 1547-1550. doi:  10.1103/PhysRevLett.84.1547
[42] Wu J, Ghosh S, Su R, et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities [J]. Nano Lett, 2021, 21(7): 3120-3126. doi:  10.1021/acs.nanolett.1c00283
[43] Fan Q, Biesold-McGee G V, Ma J, et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties [J]. Angew Chem Int Ed Engl, 2020, 59(3): 1030-1046. doi:  10.1002/anie.201904862
[44] Li X, Hoffman J M, Kanatzidis M G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency [J]. Chem Rev, 2021, 121(4): 2230-2291. doi:  10.1021/acs.chemrev.0c01006
[45] Wang X, Shoaib M, Wang X, et al. High-quality in-plane aligned cspbx3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling [J]. ACS Nano, 2018, 12(6): 6170-6178. doi:  10.1021/acsnano.8b02793
[46] Tian C, Guo T, Zhao S Q, et al. Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity [J]. RSC Advances, 2019, 9(62): 35984-35989. doi:  10.1039/C9RA07442B
[47] Zhang X, Shi H, Dai H, et al. Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet [J]. ACS Appl Mater Interfaces, 2020, 12(4): 5081-5089. doi:  10.1021/acsami.9b19968
[48] Wang J, Su R, Xing J, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite [J]. ACS Nano, 2018, 12(8): 8382-8389. doi:  10.1021/acsnano.8b03737
[49] Bouteyre P, Son Nguyen H, Lauret J S, et al. Directing random lasing emission using cavity exciton-polaritons [J]. Opt Express, 2020, 28(26): 39739-39749. doi:  10.1364/OE.410249
[50] Bao W, Liu X, Xue F, et al. Observation of rydberg exciton polaritons and their condensate in a perovskite cavity [J]. Proc Natl Acad Sci U S A, 2019, 116(41): 20274-20279. doi:  10.1073/pnas.1909948116
[51] Dang N H M, Gerace D, Drouard E, et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces [J]. Nano Lett, 2020, 20(3): 2113-2119. doi:  10.1021/acs.nanolett.0c00125