[1] Skupsky S, Lee K. Uniformity of energy deposition for laser driven fusion [J]. J Appl Phys, 1983, 54(7): 3662-3671. doi:  10.1063/1.332599
[2] Desselberger M, Willi O, Savage M, et al. Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams [J]. Phys Rev Lett, 1990, 65(24): 2997-3000. doi:  10.1103/PhysRevLett.65.2997
[3] Hu S, Michel D T, Davis A K, et al. Understanding the effects of laser imprint on plastic-target implosions on OMEGA [J]. Phys Plasmas, 2016, 23(10): 102701. doi:  10.1063/1.4962993
[4] Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012 [J]. Phys Plasmas, 2014, 21(2): 020501. doi:  10.1063/1.4865400
[5] Eimerl D, Skupsky S, Myatt J, et al. A stardriver-class laser achieving 1 % beam uniformity in 1 ns [J]. Journal of Fusion Energy, 2016, 35(2): 459-469.
[6] Dixit S, Feit M, Perry M, et al. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles [J]. Opt Lett, 1996, 21: 1715-7. doi:  10.1364/OL.21.001715
[7] Menapace J, Dixit S, Genin F, et al. Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces[C]//SPIE, 2004, 5273: 220-230.
[8] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression [J]. Phys Rev Lett, 1984, 53(11): 1057-1060. doi:  10.1103/PhysRevLett.53.1057
[9] Gerchberg R W, Saxton W. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1971, 35: 237-250.
[10] Dixit S N, Lawson J K, Manes K R, et al. Kinoform phase plates for focal plane irradiance profile control [J]. Opt Lett, 1994, 19(6): 417-419. doi:  10.1364/OL.19.000417
[11] Lin Y, Kessler T, Lawrence G. Distributed phase plates for super-Gaussian focal-plane irradiance profiles [J]. Opt Lett, 1995, 20: 764-766. doi:  10.1364/OL.20.000764
[12] Neauport J, Ribeyre X, Daurios J, et al. Design and optical characterization of a large continuous phase plate for Laser Integration Line and Laser Megajoule facilities [J]. Appl Opt, 2003, 42(13): 2377-2382. doi:  10.1364/AO.42.002377
[13] Marozas J A. Fourier transform-based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility [J]. JOSA A, 2007, 24(1): 74. doi:  10.1364/JOSAA.24.000074
[14] Marozas J A, Collins T J B, Zuegel J D, et al. Continuous distributed phase-plate advances for high-energy laser systems [J]. Journal of Physics: Conference Series, 2016: 717.
[15] Goodman J W. Statistical Optics[M]. Newyork: John Wiley & Sons, 2015.
[16] Li Ping, Ma Chi, Li Jingqin, et al. Design of continuous phase plates for controlling spatial spectrum of focal spot [J]. High Power Laser and Particle Beams, 2008, 20(7): 1114. (in Chinese)
[17] Lei Z M, Sun X Y, Lv F N, et al. Application of optical diffraction method in designing phase plates [J]. Chinese Physics B, 2016, 25(11): 114201.
[18] Wen Shenglin, Hou Jing, Yang Chunlin, et al. Uniformity of near-field caused by continuous phase plates for beam smoothing [J]. High Power Laser and Particle Beams, 2011, 23(6): 1543. (in Chinese)
[19] Deng X, Liang X, Chen Z, et al. Uniform illumination of large targets using a lens array [J]. Appl Opt, 1986, 25(3): 377-381. doi:  10.1364/AO.25.000377
[20] Zheng Jianzhou, Yu Qingxu, Lu Yongjun, et al. Improved lens arrays optical system with controllable focuswidth for uniform irradiation [J]. Chinese Journal of Lasers, 2007, 34(3): 331-336. (in Chinese)
[21] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: A review [J]. Phys Plasmas, 2015, 22(11): 110501. doi:  10.1063/1.4934714
[22] Campbell M, Goncharov V, Sangster T, et al. Laser-direct-drive program: Promise, challenge, and path forward [J]. Matter Radiat Extrem, 2017, 2(2): 1-18.
[23] Skupsky S, Short R W, Kessler T, et al. Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light [J]. J Appl Phys., 1989, 66(8): 3456-3462. doi:  10.1063/1.344101
[24] Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(6): 21-36. (in Chinese)
[25] Willi O, Afshar-Rad T, Coe S, et al. Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques [J]. Physics of Fluids B: Plasma Physics, 1990, 2(6): 1318.
[26] Regan S, Marozas J, Craxton S, et al. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams [J]. J Opt Soc Am B-Opt Physics, 2005, 22(5): 998.
[27] Lehmberg R H, Schmitt A J, Bodner S E. Theory of induced spatial incoherence [J]. J Appl Phys, 1987, 62(7): 2680-2701. doi:  10.1063/1.339419
[28] Regan S, Marozas J, Kelly J, et al. Experimental investigation of smoothing by spectral dispersion [J]. J Opt Soc Am B-Opt Physics, 2000, 17: 1483-1489. doi:  10.1364/JOSAB.17.001483
[29] Li F, Gao Y, Zhao X, et al. Induced spatial incoherence combined with continuous phase plate for the improved beam smoothing effect [J]. Opt Eng, 2018, 57(6): 066117.
[30] Tsubakimoto K, Nakatsuka M, Nakano H, et al. Suppression of interference speckles produced by a random phase plate, using a polarization control plate [J]. Opt Commun, 1992, 91(1-2): 9-12. doi:  10.1016/0030-4018(92)90091-5
[31] Fuchs J, Labaune C, Depierreux S, et al. Modification of spatial and temporal gains of stimulated Brillouin and Raman scattering by polarization smoothing [J]. Phys Rev Lett, 2000, 84(14): 3089-3092. doi:  10.1103/PhysRevLett.84.3089
[32] Rothenberg J E. Polarization beam smoothing for inertial confinement fusion [J]. J Appl Phys, 2000, 87: 3654-3662. doi:  10.1063/1.372395
[33] Wang Y, Wang F, Zhang Y, et al. Polarization smoothing for single beam by a nematic liquid crystal scrambler [J]. Appl Opt, 2017, 56: 8087. doi:  10.1364/AO.56.008087
[34] Spaeth M, Manes K, Kalantar D, et al. Description of the NIF Laser [J]. Fusion Science and Technology, 2016, 69: 25-145. doi:  10.13182/FST15-144
[35] Zheng W, Wei X, Zhu Q, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ Laser Facility [J]. Matter Radiat Extrem, 2017, 2(5): 243-255.
[36] Skupsky S, Kessler T. Speckle‐free phase plate (diffuser) for far‐field applications [J]. J Appl Phys, 1993, 74: 4310-4316. doi:  10.1063/1.354395
[37] Dainty J. Laser Speckle and Related Phenomena[M]. New York: Springer-Verlag Berlin Heidelberg 1975.
[38] Munro D, Dixit S, Langdon A, et al. Polarization smoothing in a convergent beam [J]. Appl Opt, 2005, 43: 6639-47.
[39] Huang X, Jia H, Zhou W, et al. Experimental demonstration of polarization smoothing in a convergent beam [J]. Appl Opt, 2015, 54: 9786. doi:  10.1364/AO.54.009786
[40] Ren Guangsen, Sun Quan, Wu Wuming, et al. Effect of radial polarization modulation on smoothing and polarization properties of focal speckle [J]. High Power Laser and Particle Beams, 2015, 27(12): 122008. (in Chinese)
[41] Lehmberg R H, Obenschain S P. Use of induced spatial incoherence for uniform illumination of laser fusion targets [J]. Opt Commun, 1983, 46(1): 27-31. doi:  10.1016/0030-4018(83)90024-X
[42] Zhao X, Gao Y, Li F, et al. Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence [J]. Appl Opt, 2019, 58(8): 2121-2126. doi:  10.1364/AO.58.002121
[43] Obenschain S P, Pawley C J, Mostovych A N, et al. Reduction of Raman scattering in a plasma to convective levels using induced spatial incoherence [J]. Phys Rev Lett, 1989, 62(7): 768-771. doi:  10.1103/PhysRevLett.62.768
[44] Li F, Gao Y, Zhao X, et al. Experiment and theory of beam smoothing using induced spatial incoherence with a lens array [J]. Appl Opt, 2020, 59(10): 2976-2982. doi:  10.1364/AO.383292
[45] Veron D, Ayral H, Gouedard C, et al. Optical spatial smoothing of Nd-glass laser beam [J]. Opt Commun, 1988, 65(1): 42-46. doi:  10.1016/0030-4018(88)90438-5
[46] Donnat P, Gouédard C, Veron D, et al. Induced spatial incoherence and nonlinear effects in Nd: glass amplifiers [J]. Opt Lett, 1992, 17(5): 331-333. doi:  10.1364/OL.17.000331
[47] Obenschain S P, Bodner S E, Colombant D, et al. The Nike KrF laser facility: Performance and initial target experiments [J]. Phys Plasmas, 1996, 3(5): 2098-2107. doi:  10.1063/1.871661
[48] Xiang Y, Star G, Tong X, et al. Beam-smoothing investigation on "Heaven I"-art. no. 62795Z[C]//SPIE, 2007, 6279: 62795Z.
[49] Nakano H, Tsubakimoto K, Miyanaga N, et al. Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd: glass laser system [J]. J Appl Phys, 1993, 73(5): 2122-2131. doi:  10.1063/1.353159
[50] Zhou Bingjie, Zhong Zheqiang, Zhang Bin. Influence of beam moving characteristics on smoothing effect of focal spot [J]. Acta Physica Sinica, 2012, 61(21): 214202. (in Chinese)
[51] Zheng Tianran, Zhang Yong, Di Yongchao, et al. Theoretical research of “intensity sweep” laser beam smoothing characteristics [J]. Laser & Optoelectronics Progress, 2018, 55(11): 111405. (in Chinese)
[52] Rothenberg J. Two-dimensional beam smoothing by spectral dispersion for direct-drive inertial confinement fusion[C]//SPIE, 1995, 2633.
[53] Miyaji G, Miyanaga N, Urushihara S, et al. Three-directional spectral dispersion for smoothing of a laser irradiance profile [J]. Opt Lett, 2002, 27: 725-7. doi:  10.1364/OL.27.000725
[54] Marozas J, Zuegel J, Collins T. Alternative laser-speckle-smoothing schemes for NIF direct-drive-ignition designs[C]//49th Annual Meeting of the Division of Plasma Physics, 2007.
[55] Zhou Yuliang, Sun Zhzn, Liu Lanqin, et al. Research on beam smoothing technology for high-oower laser system [J]. Laser & Optoelectronics Progress, 2011(10): 41-48. (in Chinese)
[56] Kelly J, Shvydky A, Marozas J, et al. Simulations of the propagation of multiple-FM smoothing by spectral dispersion on OMEGA EP[C]//SPIE, 2013, 8602: 86020D.
[57] Holstein P A, André M, Casanova M, et al. Target design for the LMJ [J]. Applied Physics, 2000, 1: 693-704.
[58] Duluc M, Penninckx D, Loiseau P, et al. Comparison of longitudinal and transverse smoothing by spectral dispersion on stimulated Brillouin backscattering in inertial confinement fusion plasmas [J]. Phys Plasmas, 2019, 26(4): 042707. doi:  10.1063/1.5089113
[59] Zhang R, Zhang X, Sui Z, et al. Research on target uniform irradiation method using linearly modulated light and special grating dispersion [J]. Opt Laser Technol, 2011, 43(7): 1073-1077. doi:  10.1016/j.optlastec.2011.02.001
[60] Eimerl D, Campbell E M, Krupke W F, et al. StarDriver: a flexible laser driver for inertial confinement fusion and high energy density physics [J]. Journal of Fusion Energy, 2014, 33(5): 476-488. doi:  10.1007/s10894-014-9697-2
[61] Eimerl D, Skupsky S, Campbell M. StarDriver: Recent results on beam smoothing and LPI mitigation [J]. Journal of Physics: Conference Series, 2016, 717: 012015. doi:  10.1088/1742-6596/717/1/012015
[62] Eimerl D. StarDriver: recent results on beam smoothing and 2ωpe mitigation [J]. Journal of Lasers, Optics & Photonics, 2016, 3(1): 1000130.
[63] Zhong Zheqiang, Zhou Bingjie, Ye Rong, et al. A novel scheme of beam smoothing using multi-central frequency and multi-color smoothing by spectral dispersion [J]. Acta Physica Sinica, 2014, 63(3): 035201. (in Chinese)
[64] Zhong Z, Hou P, Zhang B. Radial smoothing for improving laser-beam irradiance uniformity [J]. Opt Lett, 2015, 40: 5850. doi:  10.1364/OL.40.005850
[65] Hou P, Zhong Z, Zhang B. Analysis and optimization of radial smoothing based on optical Kerr effect for irradiation improvement [J]. Opt Laser Technol, 2016, 85: 48-54.
[66] Weng X, Li T, Zhong Z, et al. Analysis of illumination uniformity affected by small-scale self-focusing of a pump beam in the radial smoothing scheme [J]. Appl Opt, 2017, 56: 8902. doi:  10.1364/AO.56.008902
[67] Zhong Z, Yi M, Sui Z, et al. Ultrafast smoothing scheme for improving illumination uniformities of laser quads [J]. Opt Lett, 2018, 43: 3285. doi:  10.1364/OL.43.003285
[68] Tian Boyu, Zhong Zheqiang, Sui Zhan, et al. Ultrafast azimuthal beam smoothing scheme based on vortex beam [J]. Acta Physica Sinica, 2019, 68(2): 024207. (in Chinese)
[69] Zhong Zheqiang, Zhang Bin. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate [J]. High Power Laser and Particle Beams, 2020, 32(1): 11012. (in Chinese)
[70] Xiong Hao, Zhong Zheqiang, Zhang Bin, et al. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad [J]. Acta Physica Sinica, 2020, 69(6): 064206. (in Chinese)
[71] Yi M, Zhong Z, Zhang B, et al. Combined implementation of smoothing technologies for improving illumination uniformity of laser quad in multi-directions [J]. Journal of Modern Optics, 2019, 66: 1-8. doi:  10.1080/09500340.2018.1508776
[72] Huang Yuan, Zhang Yinrui, Zhong Zheqiang, et al. Rapid Polarization rotation smoothing scheme based on interference of circularly polarized vortex beamlet [J]. Chinese Journal of Lasers, 2020, 47(9): 0905003. (in Chinese) doi:  10.3788/CJL202047.0905003
[73] Afeyan B, Hüller S. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE[C]//EPJ Web of Conferences, 2012: 59.
[74] Afeyan B, Hüller S. Optimal control of laser-plasma instabilities using Spike Trains of Uneven Duration and Delay: STUD pulses[C]//IEEE International Conference on Plasma Science, 2013, arXiv:1304.3960
[75] Hüller S, Afeyan B. Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration and Delay (STUD pulses)[C]//EPJ Web of Conferences, 2012: 59.
[76] Albright B, Yin L, Afeyan B. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using Spike Trains of Uneven Duration and Delay: STUD pulses [J]. Phys Rev Lett, 2013, 64(4): 043804.
[77] Li Y, Wang S, Xu J, et al. Precise manipulation on spike train of uneven duration or delay pulses with a time grating system [J]. Opt Express, 2015, 23: 29484. doi:  10.1364/OE.23.029484
[78] Kruschwitz B, Kelly J, Dorrer C, et al. Commissioning of a multiple-frequency modulation smoothing by spectral dispersion demonstration system on OMEGA EP[C]//SPIE, 2013, 8602: 86020E.
[79] Hohenberger M, Shvydky A, Marozas J, et al. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion [J]. Physics of Plasmas, 2016, 23(9): 092702. doi:  10.1063/1.4962185
[80] Zhou S, Lin Z, Jiang X. Beam smoothing by lens array with spectral dispersion [J]. Opt Commun, 2007, 272(1): 186-191. doi:  10.1016/j.optcom.2006.10.059
[81] JiangY, Wu R, Zhou S, et al. Performance of smoothing by spectral dispersion combined with distributed phase plate on SG-II[C]//SPIE, 2013, 8904: 890403.
[82] Feng Wen, Li Qinghui, Zhou Shenlei, et al. Experimental study of two-dimensional smoothing by spectral dispersion with distributed phase plates [J]. Laser & Optoelectronics Progress, 2012, 49(5): 053001. (in Chinese)
[83] Jiang Xiujuan, Zhou Shenlei, Lin Zunqi, et al. Improving of the irradiation uniformity on targets with a diffraction-weakened lens array and spectral dispersion smoothing [J]. Acta Physica Sinica, 2006, 55(11): 5824.
[84] Beau V, Valla D, Daurios J, et al. Metrology of focusing gratings and continuous phase plates for LIL and LMJ lasers[C]//SPIE, 2004, 5252.
[85] Pawley C, Gerber K, Lehmberg R, et al. Measurements of laser-imprinted perturbations and Rayleigh–Taylor growth with the Nike KrF laser [J]. Phys Plasmas, 1997, 4: 1969-1977. doi:  10.1063/1.872560
[86] Gao Y, Cui Y, Ji L, et al. Development of low-coherence high-power laser drivers for inertial confinement fusion [J]. Matter Radiat Extrem, 2020, 5(6): 065201. doi:  10.1063/5.0009319
[87] Rao D, Gao Y, Cui Y, et al. 1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control [J]. Opt Laser Technol, 2020, 122: 105850. doi:  10.1016/j.optlastec.2019.105850
[88] Cui Y, Gao Y, Rao D, et al. High-energy low-temporal-coherence instantaneous broadband pulse system [J]. Opt Lett, 2019, 44(11): 2859-2862. doi:  10.1364/OL.44.002859
[89] Ji L, Zhao X, Liu D, et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse [J]. Opt Lett, 2019, 44(17): 4359-4362. doi:  10.1364/OL.44.004359
[90] Zhao X, Ji L, Liu D, et al. Second-harmonic generation of temporally low-coherence light [J]. APL Photonics, 2020, 5(9): 091301. doi:  10.1063/5.0022307
[91] Qiu Yue, Qian Liejia, Huang Hongyi, et al. Improve illumination uniformity by suppressing the diffraction of a lens array [J]. Chinese Journal of Lasers, 1995, 22(1): 27-31. (in Chinese)