[1] Hadfield R H. Single-photon detectors for optical quantum information applications [J]. Nature Photonics, 2009, 3: 696-705.
[2] Eisaman M D, Fan J, Migdall A, Polyakov S V. Invited review article: single-photon sources and detectors [J]. Rev Sci Instrum, 2011, 82: 071101.
[3] Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication [J]. Light-Science & Applications, 2015, 4(5): e286.
[4] Kameyama S, Yanagisawaa T, Ando T, et al. Development of wind sensing coherent Doppler LIDAR at Mitsubishi Electric Corporation-from late 1990 s to 2013[C]//Proceedings of 17th Coherent Laser Radar Conference, Barcelona, Spain. 2013.
[5] Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single-photon detectors: physics and applications [J]. Superconductor Science and Technology, 2012, 25(6): 063001.
[6] Vandevender A, Kwiat P. High efficiency single photon detection via frequency up-conversion [J]. Journal of Modern Optics, 2004, 51(9-10): 1433-1445.
[7] Shentu G L, Pelc J S, Wang X D, et al. Ultralow noise up-conversion detector and spectrometer for the telecom band [J]. Opt Express, 2013, 21: 13986-13991.
[8] Zhang J, Eraerds P, Walenta N, et al. 2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution[EB/OL].(2010-02-17)[2023-01-10]. https://arxiv.org/abs/1002.3240.
[9] Itzler M A, Jiang X D, Entwistle M, et al. Advances in InGaAsP based avalanche diode single photon detectors [J]. J Mod Opt, 2011, 58: 174-200.
[10] Campbell J C. Recent advances in telecommunications avalanche photodiodes [J]. J Lightw Technol, 2007, 25: 109-121.
[11] Ribordy G, Gautier J D, Zbinden H, et al. Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters [J]. Appl Opt, 1998, 37: 2272-2277.
[12] Fang Y Q, Chen W, Ao T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm [J]. Review of Scientific Instruments, 2020, 91: 083102. doi:  10.1063/5.0014123
[13] Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection [J]. Applied Optics, 1996, 35(12): 1956-1976. doi:  10.1364/AO.35.001956
[14] Jiang X D, Itzler M A, Nyman B, Slomkowski K. Negative feedback avalanche diodes for near-infrared single photon detection[C]//Proc SPIE, 2009, 7320: 732011.
[15] Itzler M A, Jiang X D, Onat B M, Slomkowski K. Progress in self-quenching InP-based single photon detectors[C]//Proc SPIE, 2010, 7608: 760829.
[16] Lunghi T, Barreiro C, Guinnard O, et al. Free running single photon detection based on a negative feedback InGaAs APD [J]. J Mod Opt, 2012, 59: 1481-1488.
[17] Yan Z, Hamel D R, Heinrichs A K, et al. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode [J]. Rev Sci Instrum, 2012, 83: 073105.
[18] Yu C, Shangguan M J, Xia H Y, et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications [J]. Opt Express, 2017, 25: 14611-14620.
[19] Yu C, Qiu J W, Xia H Y, et al. Compact and lightweight 1.5 μm lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector [J]. Rev Sci Instrum, 2018, 89: 103106.
[20] MPD. PDM-IR[EB/OL]. [2023-01-10]. http://www.micro-photon-devices.com/Products/Photon-Counters/PDM-IR
[21] IDQ. ID Qube NIR Gated[EB/OL]. [2023-01-10]. https://www.idquantique.com/quantum-sensing/products/id-qube-nir-gated/.
[22] Zhang J, Thew R, Gautier J D, et al. Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC [J]. IEEE J Quantum Electron, 2009, 45: 792-799.