[1] Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Materialia, 2016, 117: 311-320.
[2] Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Materialia, 2013, 61(5): 1809-1819.
[3] Zhang J, Song B, Wei Q, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. Journal of Materials Science & Technology, 2019, 35(2): 270-284.
[4] Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chinese Journal of Lasers, 2020, 47(5): 0500002. (in Chinese) doi:  10.3788/CJL202047.0500002
[5] Dang Y X, Qi W J, Lu L L. Research status and development trend of numerical simulation of laser cladding technology [J]. Hot Working Technology, 2016, 45(6): 23-27. (in Chinese)
[6] Liu H, Yu G, He X, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding [J]. Chinese Journal of Lasers, 2013, 40(12): 1203007. (in Chinese) doi:  10.3788/CJL201340.1203007
[7] Sun J. Process researchandnumericalsinnulation oflaser cladding fabrication technology feeding by side[D]. Guangzhou: South China University of Technology, 2012: 45-79. (in Chinese)
[8] Tseng W C, Aoh J N. Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source [J]. Optics & Laser Technology, 2013, 48: 141-152.
[9] Zhang J P, Shi S H, Jiang W W, et al. Simulation analysis of temperature field and process optimization of laser cladding based on internal wire feeding of three beams [J]. Chinese Journal of Lasers, 2019, 46(10): 1002004. (in Chinese) doi:  10.3788/CJL201946.1002004
[10] Li L Q, Wang J D, Wu C C, et al. Temperature field of molten pool and microstructure property in laser melting depositions of Ti6Al4V [J]. Chinese Journal of Lasers, 2017, 44(3): 0302009. (in Chinese) doi:  10.3788/CJL201744.0302009
[11] Yu F T. Microstructure and performance of AlSi10Mg alloy prepared by laser melting deposition [D]. Harbin: Harbin Institute of Technology, 2019: 42-55. (in Chinese)
[12] Wen P, Li Z X, Zhang S, et al. Investigation on porosity, microstructures and performances of 6A01-T5 aluminum alloy joint by oscillating fiber laser CMT hybrid welding [J]. Chinese Journal of Lasers, 2020, 47(8): 0802003. (in Chinese) doi:  10.3788/CJL202047.0802003
[13] Chu F H, Zhang X, Huang W J, et al. A review: The formation mechanism and effect on mechanical properties of defects of aluminum alloy by selective laser melting[J/OL]. Materials Reports: 1-26. [2021-04-10]. http://kns.cnki.net/kcms/detail/50.1078.TB.20200902.1631.002.html. (in Chinese)
[14] LiuT, Zhao Y Q, Zhou X D, et al. Effect of energy ratio coefficient on pore during aluminum alloy laser-mig hybrid welding [J]. Chinese Journal of Lasers, 2020, 47(11): 1102004. (in Chinese) doi:  10.3788/CJL202047.1102004
[15] Li L Q, Wang X, Qu J Y, et al. Effects of porosity on mechanical properties of laser metal deposited AlSi10Mg alloy [J]. China Surface Engineering, 2019, 32(3): 109-114. (in Chinese)
[16] Li L, Qu J, Wang X. Formability and mechanical property of laser metal deposited AlSi10Mg alloy [J]. Surface Technology, 2019, 48(6): 332-337. (in Chinese)
[17] Biro E, Zhou Y, Weckman D C, et al. The effects of Ni and Au/Ni platings on laser welding of thin sheets [J]. Journal of Laser Applications, 2001, 13(3): 96-104. doi:  10.2351/1.1356420
[18] Shi S H, Fu G Y, Wang A J, et al. Laser processing forming and manufacturing intra-light powder feeding process and optical powder feeding nozzle: China, 200610116413.1 [P]. 2016-12-01. (in Chinese)
[19] Zhang R, Shi T, Shi S H, et al. Closed-loop control of laser engineered net shaping of unequal-height parts [J]. Chinese Journal of Lasers, 2018, 45(3): 0302005. (in Chinese) doi:  10.3788/CJL201845.0302005
[20] Wan L, Shi S H, Xia Z X, et al. Laser preheating/fluid cooling assisted lasermetal deposition of AlSi10Mg [J]. Infrared and Laser Engineering, 2021, 50(7): 20200365. (in Chinese) doi:  10.3788/IRLA20200365
[21] Huang Y L, Yang F H, Liang G Y, et al. Using in-situ technique to determine laser absorptivity of Al-alloys [J]. Chinese Journal of Lasers, 2003, 30(5): 449-453. (in Chinese)
[22] Wan L, Shi S, Xia Z, et al. Directed energy deposition of CNTs/AlSi10Mg nanocomposites: Powder preparation, temperature field, forming, and properties [J]. Optics and Laser Technology, 2021, 139(1): 106984.
[23] Cao F G, Hu J M, Liu Y, et al. Laser Processing [M]. Beijing: Chemical Industry Press, 2015: 4. (in Chinese)