[1] Ahmed H Zewail. Femtochemistry: atomic-scale dynamics of the chemical bond [J]. The Journal of Physical Chemistry A, 2000, 104(24): 5660-5694.
[2] Xin Zhu, Christine L Kalcic, Nelson Winkler, et al. Applications of femtochemistry to proteomic and metabolomic analysis [J]. The Journal of Physical Chemistry A, 2010, 114(38): 10380-10387.
[3] Hrvoje Petek. Single-molecule femtochemistry: molecular imaging at the space-time limit [J]. Acs Nano, 2014, 8(1): 5-13.
[4] Ulf Saalmann, Jan-Michael Rost. Ionization of clusters in intense laser pulses through collective electron dynamics [J]. Physical Review Letters, 2003, 91(22): 223401.
[5] Psikal J, Tikhonchuk V T, Limpouch J, et al. Ion acceleration by femtosecond laser pulses in small multispecies targets [J]. Physics of Plasmas, 2008, 15(5): 053102.
[6] Rafael R Gattass, Eric Mazur. Femtosecond laser micromachining in transparent materials [J]. Nature Photonics, 2008, 2(4): 219-225.
[7] Anatol Khilo, Steven J Spector, Matthew E Grein, et al. Photonic ADC: overcoming the bottleneck of electronic jitter [J]. Optics Express, 2012, 20(4): 4454-4469.
[8] Schulz S, Grguras I, Behrens C, et al. Femtosecond all-optical synchronization of an X-ray free-electron laser [J]. Nature Communication, 2015, 6: 5938.
[9] Matthew Walbran, Alexander Gliserin, Kwangyun Jung, et al. 5-femtosecond laserelectron synchronization for pump-probe crystallography and diffraction [J]. Physical Review Applied, 2015, 4: 044013.
[10] Bartels A, Diddams S A, Oates C W, et al. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references [J]. Optics Letters, 2005, 30(6): 667-669.
[11] Cox J A, Putnam W P, Sell A, et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback [J]. Optics Letters, 2012, 37(17): 3579-3581.
[12] Paolo Ghelfi, Francesco Laghezza, Filippo Scotti, et al. A fully photonics-based coherent radar system [J]. Nature, 2014, 507: 341-345.
[13] Ming Xin, Kemal Şafak, Franz X Kärtner. Ultra-precise timing and synchronization for large-scale scientific instruments [J]. Optica, 2018, 5(12): 1564-1578.
[14] Kim J, Kärtner F X. Attosecond-precision ultrafast photonics [J]. Laser and Photonics Reviews, 2010, 4(3): 432-456.
[15] Donald Barrett Sullivan, David W Allan, David A Howe, et al.. Characterization of Clocks and Oscillators [M]. US: Department of Commerce, National Institute of Standards and Technology, 1990.
[16] Montress G K, Parker T E, Loboda M J. Residual phase noise measurements of VHF, UHF, and microwave components [C]//Proceedings of the 43rd Annual Symposium on IEEE, 1989, 41(5): 664-679.
[17] D vonder Linde. Characterization of the noise in continuously operating mode-locked lasers [J]. Applied Physics B, 1986, 39: 201-217.
[18] Ouyang Chunmei, Shum Ping, Wang Honghai, et al. Observation of timing jitter reduction induced by spectral filtering in a fiber laser mode locked with a carbon nanotube-based saturable absorber [J]. Optics Letters, 2010, 35(14): 2320-2322.
[19] Scott R P, Langrock C, Kolner B H. High-dynamic-range laser amplitude and phase noise measurement techniques [C]// IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 641-655.
[20] Youjian Song, Chur Kim, Kwangyun Jung, et al. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime [J]. Optics Express, 2011, 19(15): 14518-14525.
[21] Xu Shaofu, Zou Xiuting, Ma Bowen, et al. Deep-learning-powered photonic analog-to-digital conversion [J]. Light: Science & Applications, 2019, 8: 66.
[22] Andrew J Benedick, James G Fujimoto, Franz X. Kartner. Optical flywheels with attosecond jitter [J]. Nature Photonics, 2012, 6(2): 97-100.
[23] Peng Qin, Youjian Song, Hyoji Kim, et al. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering [J]. Optics Express, 2014, 22(23): 28276-28283.
[24] Wei Chen, Youjian Song, Kwangyun Jung, et al. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser [J]. Optics Express, 2016, 24(2): 1347-1357.
[25] Hou D, Lee C-C, Yang Z, et al. Timing jitter characterization of mode-locked lasers with <1 zs/√Hz resolution using a simple optical heterodyne technique [J]. Optics Letters, 2015, 40(13): 2985-2988.
[26] Tae Keun Kim, Youjian Song, Kwangyun Jung, et al. Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers [J]. Optics Letters, 2011, 36(22): 4443-4445.
[27] Kwangyun Jung, Jungwon Kim. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave [J]. Scientific Reports, 2015, 5: 16250.
[28] Tian Haochen, Yang Wenkai, Dohyeon Kwon, et al. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer [J]. Optics Express, 2020, 28(7): 9232-9243.
[29] Bartels A, Cerna R, Kistner C, et al. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling [J]. Review of Scientific Instruments, 2007, 78(3): 035107.
[30] Shi Haosen, Song Youjian, Yu JiaHe, et al. Quantum-limited timing jitter characterization of mode-locked lasers by asynchronous optical sampling [J]. Optics Express, 2017, 25(1): 10-19.
[31] Li Duo, Umit Demirbas, Andrew Benedick, et al. Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers [J]. Optics Express, 2012, 20(21): 23422-23435.
[32] Portuondo-Campa E, Paschotta R, Lecomte S. Sub-100 attosecond timing jitter from low-noise passively mode-locked solid-state laser at telecom wavelength [J]. Optics Letters, 2013, 38(15): 2650-2653.
[33] Jungwon Kim, Jeff Chen, Jonathan Cox, et al. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers [J]. Optics Letters, 2007, 32(24): 3519-3521.
[34] Kuse N, Jiang J, Lee C-C, et al. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror [J]. Optics Express, 2016, 24(3): 3095-3102.
[35] Jian Chen, Jason W Sickler, Peter Fendel, et al. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication [J]. Optics Letters, 2008, 33(9): 959-961.
[36] Heewon Yang, Hyoji Kim, Junho Shin, et al. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser [J]. Optics Letters, 2014, 39(1): 56-59.
[37] Wang Yan, Tian Haochen, Ma Yuxuan, et al. Timing jitter of high-repetition-rate mode-locked fiber lasers [J]. Optics Letters, 2018, 43(18): 4382-4385.
[38] Wang Yan, Tian Haochen, Hou Dong, et al. Timing jitter reduction through relative intensity noise suppression in high-repetition-rate mode-locked fiber lasers [J]. Optics Express, 2019, 27(8): 11273-11280.
[39] Jiazheng Song, Hushan Wang, Xinning Huang, et al. Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate [J]. Applied Optics, 2019, 58(7): 1733-1738.
[40] Lianping Hou, Mohsin Haji, Jehan Akbar, et al. Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers [J]. Optics Letters, 2011, 36(6): 966-968.
[41] Haroon Asghar, Wei Wei, Pramod Kumar, et al. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback [J]. Optics Express, 2018, 26(4): 4581-4592.
[42] Liu Songtao, Tin Komljenovic, Sudharsanan Srinivasan, et al. Characterization of a fully integrated heterogeneous silicon/III-V colliding pulse mode-locked laser with on-chip feedback [J]. Optics Express, 2018, 26(8): 9714-9723.
[43] Dongin Jeong, Dohyeon Kwon, Igju Jeon, et al. Ultralow jitter silica microcomb [J]. Optica, 2020, 7(9): 1108-1111.
[44] Pang M, He W, Jiang X, et al. All-optical bit storage in a fibre laser by optomechanically bound states of solitons [J]. Nature Photonics, 2016, 10: 454-458.
[45] Shi Haosen, Song Youjian, Wang Chingyue, et al. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule [J]. Optics Letters, 2018, 43(7): 1623-1626.
[46] Kim Jungwon, Song Youjian. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications [J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.
[47] Jian Chen, Jason W Sickler, Erich P Ippen. High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser [J]. Optics Letters, 2007, 32(11): 1566-1568.
[48] Jian Chen, Jason Sickler, Hyunil Byun, et al. Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser [C]// Ultrafast Phenomena XVI: Proceedings of the 16th International Conference, 2009: 732–734.
[49] Li Xing, Zou Weiwen, Wu Kan, et al., Timing-jitter reduction by use of a spectral filter in a broadband femtosecond fiber laser [C]//IEEE Photonics Technology Letters, 2010,27(8): 911-914.
[50] Hyunil Byun, Michelle Y Sander, Ali Motamedi, et al. Compact, stable 1 GHz femtosecond Er-doped fiber lasers [J]. Applied Optics, 2010, 49(29): 5577-5582.
[51] Chur Kim, Sangho Bae, Khanh Kieu, et al. Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength [J]. Optics Express, 2013, 21(22): 26533-26541.
[52] Kan Wu, Xiaoyan Zhang, Jun Wang, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber [J]. Optics Letters, 2015, 40(7): 1374-1377.
[53] Kwangyun Jung, Jungwon Kim. Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency [J]. Optics Letters, 2015, 40(3): 316-319.
[54] Junho Shin, Kwangyun Jung, Youjian Song, et al. Characterization and analysis of timing jitter in normal-dispersion mode-locked Er-fiber lasers with intra-cavity filtering [J]. Optics Express, 2015, 23(17): 22898-22906.
[55] Dohyun Kim, Dohyeon Kwon, Bongwan Lee, et al. Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3 × 3 coupler [J]. Optics Letters, 2019, 44(5): 1068-1071.
[56] Bao Chengying, Yang Changxi. Harmonic mode-locking in a Tm-doped fiber laser: characterization of its timing jitter and ultralong starting dynamics [J]. Optics Communications, 2015, 356: 463-467.
[57] Ahmet E Akosman, Michelle Y Sander. Low noise, mode-locked 253 MHz Tm/Ho fiber laser with core pumping at 790 nm [C]//IEEE Photonics Technology Letters, 2016, 28(17): 1878-1881.
[58] Cheng Huihui, Wang Wenlong, Zhou Yi, et al. High-repetition-rate ultrafast fiber lasers [J]. Optics Express, 2018, 26(13): 16411-16421.
[59] Kristina Bagnell, Anthony Klee, Peter J Delfyett, et al. Demonstration of a highly stable 10 GHz optical frequency comb with low timing jitter from a SCOWA-based harmonically mode-locked nested cavity laser [J]. Optics Letters, 2018, 43(10): 2396-2399.
[60] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser [J]. Nature Photonics, 2010, 4: 641-647.
[61] Altarelli M. The European X-ray free-electron laser facility in Hamburg [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(24): 2845-2849.
[62] Christopher J Milne. Thomas Schietinger, Masamitsu Aiba, et al. The Swiss X-ray free electron laser [J]. Applied Sciences, 2017, 7(7): 720.
[63] Huang Zhirong, Ingolf Lindau. SACLA hard-X-ray compact FEL [J]. Nature Photonics, 2012, 6: 505-506.
[64] Zhao Zhentang, Wang Dong, Gu Qiang, et al. SXFEL: a soft X-ray free electron laser in China [J]. Synchrotron Radiation News, 2017, 3(6): 29-33.
[65] Zhao Zhentang, Wang Dong, Yin Lixin, et al. Shanghai soft X-ray freeelectron laser facility [J]. Chinese Journal of Lasers, 2019, 46(1): 0100004.
[66] Eduard Prat, Sven Reiche. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses [J]. Physical Review Letters, 2015, 114(24): 244801.
[67] Calegari F, Ayuso D, Trabattoni A, et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses [J]. Science, 2014, 346(6207): 336-339.
[68] Öström H, Öberg H, Xin H, et al. Probing the transition state region in catalytic CO oxidation on Ru [J]. Science, 2015, 347(6225): 978-982.
[69] Şafak K, Cheng H P H, Dai A, et al. Single-mode fiber based pulsed-optical timing link with few-femtosecond precision in SwissFEL [C]//Conference on Lasers and Electro-Optics, 2019: JTh2A.100.
[70] Ming Xin, Kemal Şafak, Michael Y Peng. One-femtosecond, long-term stable remote laser synchronization over a 3.5-km fiber link [J]. Optics Express, 2014, 22(12): 14904-14912.
[71] George C Valley. Photonic analog-to-digital converters [J]. Optics Express, 2007, 15(5): 1955-1982.
[72] Jungwon Kim, Matthew J Park, Michael H Perrott, et al. Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution [J]. Optics Express, 2008, 16(21): 16509-16515.
[73] Jonghan Jin. Dimensional metrology using the optical comb of a mode-locked laser [J]. Measurement Science and Technology, 2016, 27(2): 022001.
[74] Coddington I, Swann W C, Nenadovic L. Rapid and precise absolute distance measurements at long range [J]. Nature Photonics, 2009, 3: 351-356.
[75] Zhang Hongyuan, Wei Haoyun, Wu Xuejian, et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling [J]. Optics Express, 2014, 22(6): 6597-6604.
[76] Shi Haosen, Song Youjian, Liang Fei, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers [J]. Optics Express, 2015, 23(11): 14057-14069.
[77] Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique [J]. Optics Letters, 2011, 36(6): 951-953.
[78] Liu Zejin, Ma Pengfei, Su Rongtao, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited] [J]. Journal of the Optical Society of America B, 2017, 34(3): A7-A14.
[79] Robert K Shelton, Long-Sheng Ma, Henry C Kapteyn, et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers [J]. Science, 2001, 17: 1286-1289.
[80] Cristian Manzoni, Oliver D Mücke, Giovanni Cirmi, et al. Coherent pulse synthesis: towards sub‐cycle optical waveforms [J]. Laser & Photonics Reviews, 2012, 9: 129-171.
[81] Cox J A, Putnam W P, Sell A, et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback [J]. Optical Letters, 2012, 37(17): 3579-3581.
[82] Tian Haochen, Song Youjian, Meng Fei, et al. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers [J]. Optical Letters, 2016, 41(22): 5142-5145.
[83] Ge Aichen, Liu Bowen, Chen Wei, et al. Generation of few-cycle laser pulses by coherent synthesis based on a femtosecond Yb-doped fiber laser amplification system [J]. Chinese Optics Letters, 2019, 17(4): 041403.
[84] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs [J]. Science, 2018, 359(6378): 887-891.
[85] Myoung-Gyun Suh, Kerry J Vahala. Soliton microcomb range measurement [J]. Science, 2018, 359(6378): 884-887.