[1] Edgar M P, Gibson G M, Padgett, M J. Principles and prospects for single-pixel imaging [J]. Nature Photon, 2019, 13(1): 13-20. doi:  10.1038/s41566-018-0300-7
[2] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: A review [J]. Optics Express, 2020, 28(19): 28190-28208. doi:  10.1364/OE.403195
[3] Wang Kaige, Cao Dezhong, Xiong Jun. Progress in correlated optics [J]. Physics, 2008, 37(4): 223-232. (in Chinese) doi:  10.3321/j.issn:0379-4148.2008.04.003
[4] Shapiro J H, Boyd R W. The physics of ghost imaging [J]. Quantum Information Processing, 2012, 11: 949-993. doi:  10.1007/s11128-011-0356-5
[5] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429. doi:  10.1103/PhysRevA.52.R3429
[6] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon "ghost" interference and diffraction [J]. Physical Review Letters, 1995, 74(18): 3600-3603. doi:  10.1103/PhysRevLett.74.3600
[7] Fonseca E J S, Ribeiro P H S, Padua S, et al. Quantum interference by a nonlocal double slit [J]. Physical Review A, 1999, 60(2): 1530-1533. doi:  10.1103/PhysRevA.60.1530
[8] Bennink R S, Bentley S J, Boyd R W. "Two-Photon" coincidence imaging with a classical source [J]. Physical Review Letters, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[9] Gatti A, Brambilla E, Bache M, et al. Correlated imaging, quantum and classical [J]. Physical Review A, 2004, 70(1): 013802. doi:  10.1103/PhysRevA.70.013802
[10] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation [J]. Physical Review Letters, 2004, 93(9): 093602. doi:  10.1103/PhysRevLett.93.093602
[11] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction [J]. Physical Review Letters, 2004, 92(9): 93903. doi:  10.1103/PhysRevLett.92.093903
[12] Cao D Z, Xiong J, Wang K. Geometrical optics in correlated imaging systems [J]. Physical Review A, 2005, 71(1): 013801. doi:  10.1103/PhysRevA.71.013801
[13] Valencia A, Scarcelli G, D’Angelo M, et al. Two-photon imaging with thermal light [J]. Physical Review Letters, 2005, 94(6): 063601. doi:  10.1103/PhysRevLett.94.063601
[14] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light [J]. Physical Review Letters, 2005, 94(18): 183602. doi:  10.1103/PhysRevLett.94.183602
[15] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light [J]. Optics Letters, 2005, 30(18): 2354-2356. doi:  10.1364/OL.30.002354
[16] Chen X H, Liu Q, Luo K H, et al. Lensless ghost imaging with true thermal light [J]. Optics Letters, 2009, 34(5): 695. doi:  10.1364/OL.34.000695
[17] Cao D Z, Xiong J, Zhang S H, et al. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light [J]. Applied Physics Letters, 2008, 92(20): 013802.
[18] Chan K W C, O'Sullivan M N, Boyd R W. High-order thermal ghost imaging [J]. Optics Letters, 2009, 34(21): 3343-3345. doi:  10.1364/OL.34.003343
[19] Zhang P, Gong W, Shen X, et al. Improving resolution by the second-order correlation of light fields [J]. Optics Letters, 2009, 34(8): 1222. doi:  10.1364/OL.34.001222
[20] Erkmen B I, Shapiro J H. Signal-to-noise ratio of Gaussian-state ghost imaging [J]. Physical Review A, 2009, 79(2): 1-2.
[21] Zhou Y, Simon J, Liu J, et al. Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime [J]. Physical Review A, 2010, 81(4): 1334-1342.
[22] Chan K, O'Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: High-order correlations vs. background subtraction [J]. Optics Express, 2010, 18(6): 5562-5573. doi:  10.1364/OE.18.005562
[23] Chen X H, Agafonov I N, Luo K H. High-visibility, high-order lensless ghost imaging with thermal light [J]. Optics Letters, 2010, 35(8): 1166-1168. doi:  10.1364/OL.35.001166
[24] Karmakar S, Zhai Y H, Chen H, et al. The first ghost image using sun as a light source[C]//Quantum Electronics and Laser Science Conference, 2011: QFD3.
[25] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight [J]. Optics Letters, 2014, 39(8): 2314. doi:  10.1364/OL.39.002314
[26] Gong W L, Zhao C Q, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Scientific Reports, 2016, 6: 26133. doi:  10.1038/srep26133
[27] Wang Y L, Wang F R, Liu R F, et al. Sub-rayleigh resolution single-pixel imaging using Gaussian-and doughnut-spot illumination [J]. Optics Express, 2019, 27(5): 5973-5981. doi:  10.1364/OE.27.005973
[28] Wang Y L, Zhou Y N, Wang S X, et al. Enhancement of spatial resolution of ghost imaging via localizing and thresholding [J]. Chinese Physics B, 2019, 28(4): 044202.
[29] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802.
[30] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging [J]. Applied Physics Letters, 2009, 95(13): 131110.
[31] Sun B, Edgar M P, Bowman R, et al. 3 D computational imaging with single-pixel detectors [J]. Science, 2013, 340(6134): 844-847. doi:  10.1126/science.1234454
[32] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution [J]. Nature Communications, 2016, 7(1): 1-6. doi:  10.1038/ncomms12010
[33] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors [J]. Optics Express, 2013, 21(20): 23068-23074.
[34] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope [J]. Optica, 2014, 1(5): 285-289. doi:  10.1364/OPTICA.1.000285
[35] Morris P A, Aspden R S, Bell J, et al. Imaging with a small number of photons [J]. Nature Communications, 2015, 6: 5913. doi:  10.1038/ncomms6913
[36] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. doi:  10.1109/MSP.2007.914730
[37] Candès E J. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians, 2006, 3: 1433-1452.
[38] Candes E J, Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi:  10.1109/MSP.2007.914731
[39] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[40] Yu W K, Li M F, Yao X R, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation [J]. Optics Express, 2014, 22(6): 7133-7144.
[41] Li J, Li Y, Li J, et al. Single-pixel compressive optical image hiding based on conditional generative adversarial network [J]. Optics Express, 2020, 28(15): 22992-23002.
[42] Giljum A, Liu W, Li L, et al. General neural network approach to compressive feature extraction [J]. Applied Optics, 2021, 60(25): G217-G223.
[43] Kallepalli A, Innes J, Padgett M. Compressed sensing in the far-field of the spatial light modulator in high noise conditions [J]. Scientific Reports, 2021, 11(1): 1-8.
[44] Wu G H, Li T H, Li J H, et al. Ghost imaging under low-rank constraint [J]. Optics Letters, 2019, 44(17): 4311-4314.
[45] Lochocki B, Abrashitova K, de Boer J F, et al. Ultimate resolution limits of speckle-based compressive imaging [J]. Optics Express, 2021, 29(3): 3943-3955.
[46] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition [J]. Nature Communications, 2014, 6: 6225.
[47] Ma Y, Yin Y, Jiang S, et al. Single pixel 3D imaging with phase-shifting fringe projection [J]. Optics and Lasers in Engineering, 2021, 140(1): 106532. doi:  10.1016/j.optlaseng.2021.106532
[48] Starling D J, Storer I, Howland G A. Compressive sensing spectroscopy with a single pixel camera [J]. Applied Optics, 2016, 55(19): 5198-5202. doi:  10.1364/AO.55.005198
[49] Magalhaes F, Abolbashari M, Araujo F M, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing [J]. Optical Engineering, 2012, 51(7): 071406.
[50] Liu S, Liu Z, Wu J, et al. Hyperspectral ghost imaging camera based on a flat-field grating [J]. Optics Express, 2018, 26(13): 17705-17716.
[51] Duran V, Clemente P, Fernandez-Alonso M, et al. Single-pixel polarimetric imaging [J]. Optics Letters, 2012, 37(5): 824-826.
[52] Welsh S S, Edgar M P, Bowman R, et al. Near video-rate linear Stokes imaging with single-pixel detectors [J]. Journal of Optics, 2015, 17(2): 025705.
[53] Wu H, Zhao M, Li F, et al. Underwater polarization‐based single pixel imaging [J]. Journal of the Society for Information Display, 2020, 28(2): 157-163.
[54] Wang G, Zheng H, Tang Z, et al. All-optical naked-eye ghost imaging [J]. Scientific Reports, 2020, 10(1): 1-7.
[55] Clemente P, Durán V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging [J]. Optics Letters, 2010, 35(14): 2391-2393.
[56] Tanha M, Kheradmand R, Ahmadi-Kandjani S, et al. Gray-scale and color optical encryption based on computational ghost imaging [J]. Applied Physics Letters, 2012, 101(10): 101108.
[57] Sui L, Pang Z, Cheng Y, et al. An optical image encryption based on computational ghost imaging with sparse reconstruction [J]. Optics and Lasers in Engineering, 2021, 143: 106627.
[58] Zhang, Z, Jiao S, Yao M, et al. Secured single-pixel broadcast imaging [J]. Optics Express, 2018, 26(11): 14578-14591.
[59] Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry [J]. Science, 2018, 360(6394): 1246-1251.
[60] Studer V, Bobin J, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[C]//Proceedings of the National Academy of Sciences, 2012, 109(26): E1679-E1687.
[61] Gibson G M, Sun B, Edgar M P, et al. Real-time imaging of methane gas leaks using a single-pixel camera [J]. Optics Express, 2017, 25(4): 2998-3005.
[62] Zhang, Z, Ye J, Deng Q, et al. Image-free real-time detection and tracking of fast moving object using a single-pixel detector [J]. Optics Express, 2019, 27(24): 35394-35401.
[63] Deng Q, Zhang Z, Zhong J. Image-free real-time 3-D tracking of a fast-moving object using dual-pixel detection [J]. Optics Letters, 2020, 45(17): 4734-4737.
[64] Jiang W, Li X, Peng X, et al. Imaging high-speed moving targets with a single-pixel detector [J]. Optics Express, 2020, 28(6): 7889-7897.
[65] Zernike, F. How I discovered phase contrast [J]. Science, 1955, 121(3141): 345-349.
[66] Bache M, Magatti D, Ferri F, et al. Coherent imaging of a pure phase object with classical incoherent light [J]. Physical Review A, 2006, 73(5): 053802. doi:  10.1103/PhysRevA.73.053802
[67] Han W G. Phase-retrieval ghost imaging of complex-valued objects [J]. Physical Review A, 2010, 82(2): 023828. doi:  10.1103/PhysRevA.82.023828
[68] Shirai T, Setälä T, Friberg A T. Ghost imaging of phase objects with classical incoherent light [J]. Physical Review A, 2011, 84(4): 041801.
[69] Zhang D J, Tang Q, Wu T F, et al. Lensless ghost imaging of a phase object with pseudo-thermal light [J]. Applied Physics Letters, 2014, 104(12): 121113. doi:  10.1063/1.4869959
[70] Soldevila F, Durán V, Clemente P, et al. Phase imaging by spatial wavefront sampling [J]. Optica, 2018, 5(2): 164-174. doi:  10.1364/OPTICA.5.000164
[71] Clemente P, Duran V, Tajahuerce E, et al. Single-pixel digital ghost holography [J]. Physical Review A, 2012, 86(4): 041803. doi:  10.1103/PhysRevA.86.041803
[72] Clemente P, Durán V, Tajahuerce E, et al. Compressive holography with a single-pixel detector [J]. Optics Letters, 2013, 38(14): 2524-2527. doi:  10.1364/OL.38.002524
[73] Wu D, Luo J, Huang G, et al. Imaging biological tissue with high-throughput single-pixel compressive holography [J]. Nature Communications, 2021, 12(1): 1-12. doi:  10.1038/s41467-020-20314-w
[74] Liu R, Zhao S, Zhang P, et al. Complex wavefront reconstruction with single-pixel detector [J]. Applied Physics Letters, 2019, 114(16): 161901. doi:  10.1063/1.5087094
[75] Zhao S, Liu R, Zhang P, et al. Fourier single-pixel reconstruction of a complex amplitude optical field [J]. Optics Letters, 2019, 44(13): 3278-3281. doi:  10.1364/OL.44.003278
[76] Zhao S, Chen S, Wang X, et al. Measuring the complex spectrum of orbital angular momentum and radial index with a single-pixel detector [J]. Optics Letters, 2020, 45(21): 5990-5993. doi:  10.1364/OL.409967
[77] Horisaki R, Matsui H, Tanida J. Single-pixel compressive diffractive imaging with structured illumination [J]. Applied Optics, 2017, 56(14): 4085-4089. doi:  10.1364/AO.56.004085
[78] Li M, Bian L, Zheng G, et al. Single-pixel ptychography [J]. Optics Letters, 2021, 46(7): 1624-1627. doi:  10.1364/OL.417039
[79] Shechtman Y, Eldar Y C, Cohen O, et al. Phase retrieval with application to optical imaging: A contemporary overview [J]. IEEE Signal Processing Magazine, 2015, 32(3): 87-109.
[80] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing [J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.
[81] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy [J]. Nature Photonics, 2013, 7(9): 739-745.
[82] Streibl N. Phase imaging by the transport equation of intensity [J]. Optics Communications, 1984, 49(1): 6-10.
[83] Chapman H N, Nugent K A. Coherent lensless X-ray imaging [J]. Nature Photonics, 2010, 4(12): 833-839.
[84] Wang B Y, Han L, Yang Y, et al. Wavefront sensing based on a spatial light modulator and incremental binary random sampling [J]. Optics Letters, 2017, 42(3): 603-606.
[85] Martienssen W, Spiller E. Coherence and fluctuations in light beams [J]. American Journal of Physics, 1964, 32(12): 919-926.
[86] Zhang Z, Wang X, Zheng G, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging [J]. Optics Express, 2017, 25(16): 19619-19639. doi:  10.1364/OE.25.019619
[87] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors [J]. Scientific Reports, 2015, 5(1): 1-8.
[88] Xi M, Chen H, Yuan Y, et al. Bi-frequency 3D ghost imaging with Haar wavelet transform [J]. Optics Express, 2019, 27(22): 32349-32359.
[89] Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property [J]. IEEE Transactions on Information Theory, 2010, 56(9): 4395-4401.
[90] Zhang Z, Liu S, Peng J, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements [J]. Optica, 2018, 5(3): 315-319.
[91] Tao C, Zhu H, Wang X, et al. Compressive single-pixel hyperspectral imaging using RGB sensors [J]. Optics Express, 2021, 29(7): 11207-11220.
[92] Gao W, Yan Q R, Zhou H L, et al. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning [J]. Optics Express, 2021, 29(4): 5552-5566.
[93] Shin S, Lee K R, Baek Y S, et al. Reference-free single-point holographic imaging and realization of an optical bidirectional transducer [J]. Physical Review Applied, 2018, 9(4): 044042. doi:  10.1103/PhysRevApplied.9.044042
[94] Goorden S A, Bertolotti J, Mosk A P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device [J]. Optics Express, 2014, 22(15): 17999-18009. doi:  10.1364/OE.22.017999
[95] Chan W L, Moravec M L, Baraniuk R G, et al. Terahertz imaging with compressed sensing and phase retrieval [J]. Optics Letters, 2008, 33(9): 974-976. doi:  10.1364/OL.33.000974
[96] Horisaki R, Ogura Y, Aino M, et al. Single-shot phase imaging with a coded aperture [J]. Optics Letters, 2014, 39(22): 6466-6469. doi:  10.1364/OL.39.006466