[1] Minsky M. Memoir on inventing the confocal scanning microscope [J]. Scanning, 1988, 10(4): 128-138. doi:  10.1002/sca.4950100403
[2] 张芹芹, 吴晓静, 朱思伟, 等. 谱域光学相干层析成像量化技术及其在生物组织定量分析中的应用[J]. 光学 精密工程, 2012, 20(6): 1188-1193. doi:  10.3788/OPE.20122006.1188

Zhang Qinqin, Wu Xiaojing, Zhu Siwei, et al. Quantitative spectral domain optical coherence tomography and its application to quantitative analysis of biological tissues [J]. Optics and Precision Engineering, 2012, 20(6): 1188-1193. (in Chinese) doi:  10.3788/OPE.20122006.1188
[3] Hussain A, Steenbergen W, Vellekoop I M. Imaging blood flow inside highly scattering media using ultrasound modulated optical tomography [J]. Journal of Biophotonics, 2018, 11(1): e201700013. doi:  10.1002/jbio.201700013
[4] Kim J, Lee D, Jung U, et al. Photoacoustic imaging platforms for multimodal imaging [J]. Ultrasonography, 2015, 34(2): 88-97. doi:  10.14366/usg.14062
[5] 苗少峰, 杨虹, 黄远辉, 等. 光声成像研究进展[J]. 中国光学, 2015, 8(5): 699-713. doi:  10.3788/co.20150805.0699

Miao Shaofeng, Yang Hong, Huang Yuanhui, et al. Research progresses of photoacoustic imaging [J]. Chinese Optics, 2015, 8(5): 699-713. (in Chinese) doi:  10.3788/co.20150805.0699
[6] 张运海, 杨皓旻, 孔晨晖. 激光扫描共聚焦光谱成像系统[J]. 光学 精密工程, 2014, 22(6): 1446-1453. doi:  10.3788/OPE.20142206.1446

Zhang Yunhai, Yang Haomin, Kong Chenhui. Spectral imaging system on laser scanning confocal microscopy [J]. Optics and Precision Engineering, 2014, 22(6): 1446-1453. (in Chinese) doi:  10.3788/OPE.20142206.1446
[7] 蔡怀宇, 张玮茜, 陈晓冬, 等. 眼科光学相干层析成像的图像处理方法[J]. 中国光学, 2019, 12(4): 731-740. doi:  10.3788/co.20191204.0731

Cai Huaiyu, Zhang Weiqian, Chen Xiaodong, et al. Image processing method for ophthalmic optical coherence tomography [J]. Chinese Optics, 2019, 12(4): 731-740. (in Chinese) doi:  10.3788/co.20191204.0731
[8] Jonas Olsen, Jon Holmes, Gregor B. Advances in optical coherence tomography in dermatology- A review [J]. Journal of Biomedical Optics, 2018, 23(4): 1-10.
[9] Tan Y, Wang W, Xu C, et al. Laser confocal feedback tomography and nano-step height measurement [J]. Scientific Reports, 2013, 3: 2971. doi:  10.1038/srep02971
[10] Zhu K, Chen H, Zhang S, et al. Frequency-shifted optical feedback measurement technologies using a solid-state microchip laser [J]. Applied Sciences, 2019, 9(1): 109.
[11] 周博睿, 谈宜东, 沈学举, 等. 微泡造影剂增强超声调制激光回馈成像对比度的机理研究[J]. 物理学报, 2019, 68(21): 172-181.

Zhou Borui, Tan Yidong, Shen Xueju, et al. Mechanism of contrast-enhancement in ultrasound-modulated laser feedback imaging with ultrasonic microbubble contrast agent [J]. Acta Physica Sinica, 2019, 68(21): 172-181. (in Chinese)
[12] Zhu K, Guo B, Lu Y, et al. Single-spot two-dimensional displacement measurement based on self-mixing interferometry [J]. Optica, 2017, 4(7): 729-735. doi:  10.1364/OPTICA.4.000729
[13] Lu Y, Zhu K, Li J, et al. Depth of focus extension by filtering in the frequency domain in laser frequency-shifted feedback imaging [J]. Applied Optics, 2018, 57(20): 5823-5830. doi:  10.1364/AO.57.005823
[14] 张来线, 孙华燕, 樊桂花, 等. 基于LabVIEW的高性能激光主动探测控制与处理系统设计[J]. 红外与激光工程, 2013, 42(12): 3239-3244. doi:  10.3969/j.issn.1007-2276.2013.12.015

Zhang Laixian, Sun Huayan, Fan Guihua, et al. High efficiency laser active detection controlling and processing system design based on LabVIEW [J]. Infrared and Laser Engineering, 2013, 42(12): 3239-3244. (in Chinese) doi:  10.3969/j.issn.1007-2276.2013.12.015
[15] 黄敬霞, 张斌. 激光散射显微镜的自动检测系统[J]. 红外与激光工程, 2007, 36(z1): 274-276.

Huang Jingxia, Zhang Bin. Automatic checkout system of the laser scattering microscope [J]. Infrared and Laser Engineering, 2007, 36(z1): 274-276. (in Chinese)