[1] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. Nature Photonics, 2014, 8(2): 145-152. doi:  10.1038/NPHOTON.2013.343
[2] Yang Q F, Suh M G, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy[C]//Conference on Lasers and Electro-Optics (CLEO), 2017: SM4D. 4.
[3] Cundiff S T, Ye J. Colloquium: Femtosecond optical frequency combs [J]. Reviews of Modern Physics, 2003, 75(1): 325-342. doi:  10.1103/RevModPhys.75.325
[4] Koke S, Grebing C, Frei H, et al. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise [J]. Nature Photonics, 2010, 4(7): 462-465. doi:  10.1038/nphoton.2010.91
[5] Stern B, Ji X C, Okawachi Y, et al. Battery-operated integrated frequency comb generator [J]. Nature, 2018, 562(7727): 401-405. doi:  10.1038/s41586-018-0598-9
[6] Yao B C, Huang S W, Liu Y, et al. Gate-tunable frequency combs in graphene-nitride microresonators [J]. Nature, 2018, 558(7710): 410-414. doi:  10.1038/s41586-018-0216-x
[7] Matsko A B, Savchenkov A A, Strekalov D, et al. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion [J]. Physical Review A, 2005, 71(3): 033804. doi:  10.1103/PhysRevA.71.033804
[8] Lin G P, Coillet A, Chembo Y K. Nonlinear photonics with high-Q whispering-gallery-mode resonators [J]. Advances in Optics and Photonics, 2017, 9(4): 828-890. doi:  10.1364/AOP.9.000828
[9] Kues M, Reimer C, Lukens J M, et al. Quantum optical microcombs [J]. Nature Photonics, 2019, 13(3): 170-179. doi:  10.1038/s41566-019-0363-0
[10] Del'Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
[11] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology [J]. Nature, 2002, 416(6877): 233-237. doi:  10.1038/416233a
[12] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science, 2000, 288(5466): 635-639. doi:  10.1126/science.288.5466.635
[13] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics [J]. Nature, 2018, 557(7703): 81-85. doi:  10.1038/s41586-018-0065-7
[14] Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations [J]. Science, 2008, 321(5894): 1335-1337. doi:  10.1126/science.1161030
[15] Suh M G, Vahala K J. Soliton microcomb range measurement [J]. Science, 2018, 359(6378): 884-887. doi:  10.1126/science.aao1968
[16] Bartels A, Heinecke D, Diddams S A. 10-GHz self-referenced optical frequency comb [J]. Science, 2009, 326(5953): 681-681. doi:  10.1126/science.1179112
[17] Vahala K J. Optical microcavities [J]. Nature, 2003, 424(6950): 839-846. doi:  10.1038/nature01939
[18] Breunig I. Three-wave mixing in whispering gallery resonators [J]. Laser & Photonics Reviews, 2016, 10(4): 569-587. doi:  10.1002/lpor.201600038
[19] Strekalov D V, Marquardt C, Matsko A B, et al. Nonlinear and quantum optics with whispering gallery resonators [J]. Journal of Optics, 2016, 18(12): 123002. doi:  10.1088/2040-8978/18/12/123002
[20] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs [J]. Nature Photonics, 2019, 13(3): 158-169. doi:  10.1038/s41566-019-0358-x
[21] Kippenberg T J, Spillane S M, Vahala K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity [J]. Physical Review Letters, 2004, 93(8): 083904. doi:  10.1103/PhysRevLett.93.083904
[22] Savchenkov A A, Matsko A B, Strekalov D, et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator [J]. Physical Review Letters, 2004, 93(24): 243905. doi:  10.1103/PhysRevLett.93.243905
[23] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs [J]. Science, 2011, 332(6029): 555-559. doi:  10.1126/science.1193968
[24] Wang Mengyu, Fan Lekang, Wu Lingfeng, et al. Research on Kerr optical frequency comb generation based on MgF2 crystalline microresonator with ultra-high-Q factor [J]. Infrared and Laser Engineering, 2021, 50(5): 20210481. (in Chinese) doi:  10.3788/IRLA20210481
[25] Agha I H, Okawachi Y, Gaeta A L. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres [J]. Optics Express, 2009, 17(18): 16209-16215. doi:  10.1364/OE.17.016209
[26] Okawachi Y, Saha K, Levy J S, et al. Octave-spanning frequency comb generation in a silicon nitride chip [J]. Optics Letters, 2011, 36(17): 3398-3400. doi:  10.1364/OL.36.003398
[27] Jung H, Xiong C, Fong K F, et al. Optical frequency comb generation from aluminum nitride microring resonator [J]. Optics Letters, 2013, 38(15): 2810-2813. doi:  10.1364/OL.38.002810
[28] Hausmann B J M, Bulu I, Venkataraman V, et al. Diamond nonlinear photonics [J]. Nature Photonics, 2014, 8(5): 369-374. doi:  10.1038/nphoton.2014.72
[29] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J]. Science, 2016, 351(6271): 357-360. doi:  10.1126/science.aad4811
[30] Kim S, Han K, Wang C, et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators [J]. Nature Communications, 2017, 8: 372. doi:  10.1038/s41467-017-00491-x
[31] Wang C, Zhang M, Yu M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation [J]. Nature Communications, 2019, 10: 978. doi:  10.1038/s41467-019-08969-6
[32] Del'Haye P, Herr T, Gavartin E, et al. Octave spanning tunable frequency comb from a microresonator [J]. Physical Review Letters, 2011, 107(6): 063901. doi:  10.1103/PhysRevLett.107.063901
[33] Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators [J]. Nature Photonics, 2015, 9(9): 594-600. doi:  10.1038/NPHOTON.2015.137
[34] Yi X, Yang Q F, Yang K Y, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator [J]. Optica, 2015, 2(12): 1078-1085. doi:  10.1364/OPTICA.2.001078
[35] Yang Q F, Yi X, Yang K Y, et al. Stokes solitons in optical microcavities [J]. Nature Physics, 2017, 13(1): 53-57. doi:  10.1038/NPHYS3875
[36] Weiner A M. Frequency combs cavity solitons come of age [J]. Nature Photonics, 2017, 11(9): 533-535. doi:  10.1038/nphoton.2017.149
[37] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science, 2018, 361(6402): eaan8083. doi:  10.1126/science.aan8083
[38] Obrzud E, Rainer M, Harutyunyan A, et al. A microphotonic astrocomb [J]. Nature Photonics, 2019, 13(1): 31-35. doi:  10.1038/s41566-018-0309-y
[39] Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks [J]. Reviews of Modern Physics, 2015, 87(2): 637-701. doi:  10.1103/RevModPhys.87.637
[40] Holzwarth R, Udem T, Hansch T W, et al. Optical frequency synthesizer for precision spectroscopy [J]. Physical Review Letters, 2000, 85(11): 2264. doi:  10.1103/PhysRevLett.85.2264
[41] Murphy M T, Udem T, Holzwarth R, et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs [J]. Monthly Notices of the Royal Astronomical Society, 2007, 380(2): 839-847. doi:  10.1111/j.1365-2966.2007.12147.x
[42] Margolis H S. Spectroscopic applications of femtosecond optical frequency combs [J]. Chemical Society Reviews, 2012, 41(15): 5174-5184. doi:  10.1039/c2cs35163c
[43] Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber [J]. Optics Letters, 2001, 26(9): 608-610. doi:  10.1364/OL.26.000608
[44] Wilt B A, Burns L D, Ho E T W, et al. Advances in light microscopy for neuroscience [J]. Annual Review of Neuroscience, 2009, 32: 435-506. doi:  10.1146/annurev.neuro.051508.135540
[45] Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography - principles and applications [J]. Reports on Progress in Physics, 2003, 66(2): 239-303. doi:  10.1088/0034-4885/66/2/204
[46] Ideguchi T, Holzner S, Bernhardt S B, et al. Coherent Raman spectro-imaging with laser frequency combs [J]. Nature, 2013, 502(7471): 355-358. doi:  10.1038/nature12607
[47] Wan S, Niu R, Peng J L, et al. Fabrication of the high-Q Si3N4 microresonators for soliton microcombs [J]. Chinese Optics Letters, 2022, 20(3): 032201. doi:  10.3788/COL202220.032201
[48] Lu Z Z, Wang W Q, Zhang W F, et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator [J]. AIP Advances, 2019, 9(2): 025314. doi:  10.1063/1.5080128
[49] Fujii S, Tanabe T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation [J]. Nanophotonics, 2020, 9(5): 1087-1104. doi:  10.1515/nanoph-2019-0497
[50] Miller S, Luke K, Okawachi Y, et al. On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities [J]. Optics Express, 2014, 22(22): 26517-26525. doi:  10.1364/OE.22.026517
[51] Liu X W, Sun C Z, Xiong B, et al. Generation of multiple near-visible comb lines in an AlN microring via chi((2)) and chi((3)) optical nonlinearities [J]. Applied Physics Letters, 2018, 113(17): 171106. doi:  10.1063/1.5046324
[52] Guo X, Zou C L, Jung H, et al. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb [J]. Physical Review Applied, 2018, 10(1): 014012. doi:  10.1103/PhysRevApplied.10.014012
[53] Bruch A W, Liu X, Gong Z, et al. Pockels soliton microcomb [J]. Nature Photonics, 2021, 15(1): 21-27. doi:  10.1038/s41566-020-00704-8
[54] Gong Z, Bruch A W, Yang F, et al. Quadratic strong coupling in AlN Kerr cavity solitons [J]. Optics Letters, 2022, 47(4): 746-749. doi:  10.1364/OL.447987
[55] Wang L R, Chang L, Volet N, et al. Frequency comb generation in the green using silicon nitride microresonators [J]. Laser & Photonics Reviews, 2016, 10(4): 631-638. doi:  10.1002/lpor.201600006
[56] Szabados J, Puzyrev D N, Minet Y, et al. Frequency comb generation via cascaded second-order nonlinearities in microresonators [J]. Physical Review Letters, 2020, 124(20): 203902. doi:  10.1103/PhysRevLett.124.203902
[57] Buryak A V, Di Trapani P, Skryabin D V, et al. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications [J]. Physics Reports-Review Section of Physics Letters, 2002, 370(2): 63-235. doi:  10.1016/S0370-1573(02)00196-5
[58] Skryabin D V, Champneys A R. Walking cavity solitons [J]. Physical Review E, 2001, 63(6): 066610. doi:  10.1103/PhysRevE.63.066610
[59] Villois A, Kondratiev N, Breunig I, et al. Frequency combs in a microring optical parametric oscillator [J]. Optics Letters, 2019, 44(18): 4443-4446. doi:  10.1364/OL.44.004443
[60] Villois A, Skryabin D V. Soliton and quasi-soliton frequency combs due to second harmonic generation in microresonators [J]. Optics Express, 2019, 27(5): 7098-7107. doi:  10.1364/OE.27.007098
[61] Chen H J, Ji Q X, Wang H, et al. Chaos-assisted two-octave-spanning microcombs [J]. Nature Communications, 2020, 11(1): 1-6. doi:  10.1038/s41467-020-15914-5
[62] Guo X, Zou C L, Schuck C, et al. Parametric down-conversion photon-pair source on a nanophotonic chip [J]. Light: Science & Applications, 2017, 6(5): e16249. doi:  10.1038/lsa.2016.249
[63] Jiang X,Shao L, Zhang S X, et al. Chaos-assisted broadband momentum transformation in optical microresonators [J]. Science, 2017, 358(6361): 344-347. doi:  DOI:10.1126/science.aao0763
[64] Yang Y, Jiang X F, Kasumie S, et al. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator [J]. Optics Letters, 2016, 41(22): 5266-5269. doi:  10.1364/OL.41.005266
[65] Riesen N, Zhang W Q, Monro T M. Dispersion in silica microbubble resonators [J]. Optics Letters, 2016, 41(6): 1257-1260. doi:  10.1364/OL.41.001257
[66] Shu F J, Zhang P J, Qian Y J, et al. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator [J]. Science China-Physics Mechanics & Astronomy, 2020, 63(5): 254211. doi:  10.1007/s11433-019-1464-8
[67] Ma J Y, Xiao L F, Gu J X, et al. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle [J]. Photonics Research, 2019, 7(5): 573-578. doi:  10.1364/PRJ.7.000573
[68] Zhao Y, Ji X C, Kim B Y, et al. Visible nonlinear photonics via high-order-mode dispersion engineering [J]. Optica, 2020, 7(2): 135-141. doi:  10.1364/OPTICA.7.000135
[69] Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip [J]. Nature Communications, 2014, 5: 3069. doi:  10.1038/ncomms4069
[70] Karpov M, Guo H R, Pfeiffer M H , et al. Dynamics of soliton crystals in optical microresonators[C]//Conference on Lasers and Electro-Optics (CLEO), 2017.
[71] Wan S, Niu R, Wang Z Y, et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators [J]. Photonics Research, 2020, 8(8): 1342-1349. doi:  10.1364/PRJ.397619
[72] Wang X Y, Xie P, Wang W Q, et al. Program-controlled single soliton microcomb source [J]. Photonics Research, 2021, 9(1): 66-72. doi:  10.1364/PRJ.408612
[73] Coen S, Randle H G, Sylvestre T, et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model [J]. Optics Letters, 2013, 38(1): 37-39. doi:  10.1364/OL.38.000037
[74] Godey C, Balakireva I V, Coillet A, et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes [J]. Physical Review A, 2014, 89(6): 063814. doi:  10.1103/PhysRevA.89.063814
[75] Savchenkov A A, Matsko A B, Liang W, et al. Kerr combs with selectable central frequency [J]. Nature Photonics, 2011, 5(5): 293-296. doi:  10.1038/NPHOTON.2011.50
[76] Lu Q, Wu X, Liu L, et al. Mode-selective lasing in high-Q polymer micro bottle resonators [J]. Optics Express, 2015, 23(17): 22740-22745. doi:  10.1364/OE.23.022740
[77] Lu Q, Chen X, Liu X, et al. Opto-fluidic-plasmonic liquid-metal core microcavity [J]. Applied Physics Letters, 2020, 117(16): 161101. doi:  10.1063/5.0028050
[78] Lu Q J, Liu S, Wu X, et al. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators [J]. Optics Letters, 2016, 41(8): 1736-1739. doi:  10.1364/OL.41.001736
[79] Yin Y H, Niu Y X, Qin H Y, et al. Kerr frequency comb generation in microbottle resonator with tunable zero dispersion wavelength [J]. Journal of Lightwave Technology, 2019, 37(21): 5571-5575. doi:  10.1109/JLT.2019.2932844
[80] Jin X Y, Xu X, Gao H R, et al. Controllable two-dimensional Kerr and Raman-Kerr frequency combs in microbottle resonators with selectable dispersion [J]. Photonics Research, 2021, 9(2): 171-180. doi:  10.1364/PRJ.408492
[81] Ramelow S, Farsi A, Clemmen S, et al. Strong polarization mode coupling in microresonators [J]. Optics Letters, 2014, 39(17): 5134-5137. doi:  10.1364/OL.39.005134
[82] Carmon T, Schwefel H G L, Yang L, et al. Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities [J]. Physical Review Letters, 2008, 100(10): 103905. doi:  10.1103/PhysRevLett.100.103905
[83] Savchenkov A A, Matsko A B, Liang W, et al. Kerr frequency comb generation in overmoded resonators [J]. Optics Express, 2012, 20(24): 27290-27298. doi:  10.1364/OE.20.027290
[84] Xue X X, Xuan Y, Wang C, et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators [J]. Optics Express, 2016, 24(1): 687-698. doi:  10.1364/OE.24.000687
[85] Lin G, Diallo S, Saleh K, et al. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators [J]. Applied Physics Letters, 2014, 105(23): 231103. doi:  10.1063/1.4903516
[86] Soltani M, Matsko A, Maleki L. Enabling arbitrary wavelength frequency combs on chip [J]. Laser & Photonics Reviews, 2016, 10(1): 158-162. doi:  10.1002/lpor.201500226
[87] Lee S H, Oh D Y, Yang Q F, et al. Towards visible soliton microcomb generation [J]. Nature Communications, 2017, 8: 1295. doi:  10.1038/s41467-017-01473-9
[88] Wang H, Lu Y K, Wu L, et al. Dirac solitons in optical microresonators [J]. Light: Science & Applications, 2020, 9(1): 205. doi:  10.1038/s41377-020-00438-w
[89] Akhmediev N, Karlsson M. Cherenkov radiation emitted by solitons in optical fibers [J]. Physical Review A, 1995, 51(3): 2602-2607. doi:  10.1103/PhysRevA.51.2602
[90] Watanabe N, Tamura H, Musha M, et al. Optical frequency synthesizer for precision spectroscopy of Rydberg states of Rb atoms [J]. Japanese Journal of Applied Physics, 2017, 56(11): 112401. doi:  10.7567/JJAP.56.112401
[91] Dorche A E, Timucin D, Thyagarajan K, et al. Advanced dispersion engineering of a III-nitride micro-resonator for a blue frequency comb [J]. Optics Express, 2020, 28(21): 30542-30554. doi:  10.1364/OE.399901
[92] Choi G H, Gin A, Su J. Optical frequency combs in aqueous and air environments at visible to near-IR wavelengths [J]. Optics Express, 2022, 30(6): 8690-8699. doi:  10.1364/OE.451631