[1] Dorman C, Schulze M. Picosecond micromachining update: Unique fiber-based laser technology delivers high pulse energy and average power [J]. Laser Technik Journal, 2010, 5(4): 44-47.
[2] Muhammad N, Whitehead D, Boor A, et al. Picosecond laser micromaching of nitinol and ptatimum alloy for coronary stent applications [J]. Applied Physics A-Materials Science & Processing, 2012, 106(3): 607-617.
[3] Neuenschwander B, Bucher G F, Nussbaum C, et al. Processing of metals and dielectric materials with ps-laser pulses: results, strategies, limitations and needs[C]//Proc of SPIE, 2010, 7584: 75840R.
[4] Lu Shang, Lv Siqi, Chen Meng, et al. Realization of single-pulse energy 3 mJ, repetition frequency 1 kHz picosecond super-Gaussian beam [J]. Infrared and Laser Engineering, 2019, 48(10): 1005012. (in Chinese) doi:  10.3788/IRLA201948.1005012
[5] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials [J]. Nature Photonics, 2008, 2(4): 219-225. doi:  10.1038/nphoton.2008.47
[6] Gamaly E G, Madsen N R, Duering M, et al. Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface [J]. Physical Review B, 2005, 71: 174405. doi:  10.1103/PhysRevB.71.174405
[7] Peng H, Yang C, Lu S, et al. All-solid-state picosecond radially polarized laser and its processing characteristics [J]. Infrared and Laser Engineering, 2019, 48(1): 0106003. (in Chinese)
[8] Bai Z N, Bai Z X, Sun X L, et al. A 33.2 W high beam quality chirped-pulse amplification-based femtosecond laser for industrial processing [J]. Materials, 2020, 13(12): 2841. doi:  10.3390/ma13122841
[9] Wang Z, Fu W, Zhang R. Numerical simulation of femtosecond laser multi-pulse ablation of metal iron [J]. Infrared and Laser Engineering, 2019, 48(7): 0706002. (in Chinese)
[10] Lin Y Y, Lee P, Xu J L, et al. High-pulse-energy topological insulator Bi2Te3-based passive q-switched solid-state Laser [J]. IEEE Photonics Journal, 2016, 8(4): 1-10.
[11] Liu S, Jung D, Norman J C, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si [J]. Electronics Letters, 2018, 54(7): 432-433. doi:  10.1049/el.2017.4639
[12] Zheng Li, Wang Huibo, Tian Wenlong, et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201069. (in Chinese)
[13] Bai Z, Yuan H, Liu Z, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review [J]. Optical Materials, 2018, 75: 626-645. doi:  10.1016/j.optmat.2017.10.035
[14] Bai Z, Bai Z, Yang C, et al. High pulse energy, high repetition picosecond chirped-multi-pulse regenerative amplifier laser [J]. Optics & Laser Technology, 2013, 46(1): 25-28.
[15] Keller U, 'tHooft G W, Knox W H, et al. Femtosecond pulses from a continuously self-starting passively mode-locked Ti: sapphire laser [J]. Optics Letters, 1991, 16(13): 1022-1024. doi:  10.1364/OL.16.001022
[16] Li Z, Dong N, Zhang Y, et al. Invited Article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber [J]. ACS Photonics, 2018, 3(8): 080802.
[17] Kleinbauer J, Knappe R, Wallenstein R. 13 W picosecond Nd: GdVO4 regenerative amplifier with 200 kHz repetition rate [J]. Applied Physics B, Lasers and Optics, 2005, B81(2/3): 163-166.
[18] Agnesi A, Carra L, Dallocchio P, et al. 210 μJ picosecond pulses from a quasi-CW Nd: YVO4 grazing-incidence two-stage slab amplifier package [J]. IEEE Journal of Quantum Electronics, 2008, 44(10): 952-957.
[19] Liu H, Gao C, Tao J, et al. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode [J]. Optics Express, 2008, 16(11): 7888-7893. doi:  10.1364/OE.16.007888
[20] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi:  10.1364/JOSAB.27.000B63
[21] Liu B W, Hu M L, Fang X H, et al. High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing [J]. Laser Physics Letters, 2010, 6(1): 44-48.
[22] Manchee C P K, Möller J, Miller R J D. Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier [J]. Optics Communications, 2019, 437: 6-10. doi:  10.1016/j.optcom.2018.12.041
[23] Röser F, Schimpf D, Schmidt O, et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system [J]. Optics Letters, 2007, 32: 2230-2232. doi:  10.1364/OL.32.002230