[1] AteŞ G B, Ak A, Garipcan B, et al. Methylene blue mediated photobiomodulation on human osteoblast cells [J]. Lasers in Medical Science, 2017, 32: 1847-1855. doi:  10.1007/s10103-017-2286-7
[2] Núñez S C, França C M, Silva D F T, et al. The influence of red laser irradiation timeline on burn healing in rats [J]. Lasers in Medical Science, 2013, 28: 633-641. doi:  10.1007/s10103-012-1105-4
[3] Chandran A, Battle R, Murray R, et al. Watt-level 743 nm source by second-harmonic generation of a cascaded phosphosilicate Raman fiber amplifier [J]. Optics Express, 2021, 29(25): 41467-41474. doi:  10.1364/OE.441623
[4] 李奕晗, 陈善卓, 郭浩. 基于受激布里渊散射的多波长光载波生成及应用[J]. 中国激光, 2022, 49(19): 183-91.

Li Yihan, Chen Shanzhuo, Guo Hao. Generation and application of multi-wavelength optical carriers based on stimulated Brillouin scattering [J]. Chinese Journal of Lasers, 2022, 49(19): 1906003. (in Chinese)
[5] 张强, 姚建铨, 温伍麒, 等. 高功率激光二极管抽运Nd∶YAG连续双波长激光器[J]. 中国激光. , 2006, (05): : 577-81.

Zhang Qiang, Yao Jianquan, Wen Wulin, et al. High power laser diode pumped Nd:YAG continuous wave dual-wavelength laser [J]. Chinese Journal of Lasers, 2006, 33(5): 577-581. (in Chinese)
[6] 霍晓伟, 齐瑶瑶, 李宇琪, 等. LD泵浦掺Pr3+的可见光固体激光器研究进展[J]. 光电技术应用. 2019, 34 (5): 7-15.

Huo Xiaowei, Qi Yaoyao, Li Yuqi, et al. Research progress of LD-pumped Pr3+-doped solid-state laser in visible wavelength [J]. Electro-Optic Technology Application, 2019, 34(5): 7-15. (in Chinese)
[7] 徐斌, 张腾, 邹金海等. 直接产生可见光的激光器研究进展[J]. 厦门大学学报(自然科学版), 2021, 60 (3): 484-496.

Xu Bin, Zhang Teng, Zou Jinhai, et al. Research progress of direct generation lasers in visible spectral range [J]. Journal of Xiamen University (Natural Science), 2021, 60(3): 484-496. (in Chinese)
[8] Lin X, Chen M, Feng Q, et al. LD-pumped high-power CW Pr3+: YLF Laguerre-Gaussian lasers at 639 nm [J]. Optics & Laser Technology, 2021, 142: 107273.
[9] Zhou H, Bi X, Zhu S, et al. Multi-wavelength passively Q-switched red lasers with Nd3+:YAG/YAG/V3+:YAG/YAG composite crystal [J]. Optical and Quantum Electronics, 2018, 50(2): 56. doi:  10.1007/s11082-018-1326-2
[10] 郭阳阳, 孙芮, 金光勇. 全固态LBO倍频659.5 nm/669 nm激光器[J]. 长春理工大学学报(自然科学版) , 2019, 42(05): 9-12.

Guo Yangyang, Sun Rui, Jin Guangyong. Research on LBO frequency-double 659.5 nm/669 nm all-solid-state laser [J]. Journal of Changchun University of Science and Technology, 2019, 42(5): 9-12. (in Chinese)
[11] 鲍玉朔, 黄海涛, 陈海伟, 等. 低频移拉曼模式多阶级联的1.7 μm激光器[J]. 红外与激光工程, 2022, 51(07): 155-9. doi:  10.3788/IRLA20210507

Bao Yushuo, Huang Haitao, Chen Haiwei, et al. 1.7 μm laser with a low frequency shifted Raman mode cascade connection [J]. Infrared and Laser Engineering, 2022, 51(7): 20210507. (in Chinese) doi:  10.3788/IRLA20210507
[12] Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1602214.
[13] Bai Z, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion [J]. Opt Lett, 2018, 43(3): 563-566. doi:  10.1364/OL.43.000563
[14] 杨策, 陈檬, 马宁, 等. 皮秒多脉冲泵浦KGW红外多波长拉曼激光器[J]. 红外与激光工程, 2020, 49(11): 20200044. doi:  10.3788/IRLA20200044

Yang Ce, Chen Meng, Ma Ning, et al. Picosecond multi-pulse burst pump KGW infrared multi-wavelength Raman laser [J]. Infrared and Laser Engineering, 2020, 49(11): 20200044. (in Chinese) doi:  10.3788/IRLA20200044
[15] Granados E, Pask H M, Esposito E, et al. Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser [J]. Opt Express, 2010, 18(5): 5289-5294. doi:  10.1364/OE.18.005289
[16] Lin H, Pan X, Huang X, et al. Multi-wavelength passively Q-switched c-cut Nd: YVO4 self-Raman laser with Cr4+:YAG saturable absorber [J]. Optics Communications, 2016, 368: 39-42. doi:  10.1016/j.optcom.2016.01.083
[17] Frank M, Jelínek M, Vyhlídal D, et al. Multi-wavelength picosecond BaWO4 Raman laser with long and short Raman shifts and 12-fold pulse shortening down to 3 ps at 1227 nm [J]. Laser Physics, 2018, 28(2): 025403. doi:  10.1088/1555-6611/aa9814
[18] 张喜梅, 陈思梦, 施沈城, 等. 级联Nd: GdVO4自拉曼1309 nm激光性能研究[J]. 红外与激光工程, 2019, 48(11): 47-51. doi:  10.3788/IRLA201948.1105002

Zhang Ximei, Chen Simeng, Shi Shencheng, et al. Study on the performance of cascaded Nd:GdVO4 self-Raman laser at 1 309 nm [J]. Infrared and Laser Engineering, 2019, 48(11): 1105002. (in Chinese) doi:  10.3788/IRLA201948.1105002
[19] 白振旭, 陈晖, 李宇琪, 等. 基于金刚石拉曼转换的光束亮度增强研究进展[J]. 红外与激光工程, 2021, 50(01): 227-37. doi:  10.3788/IRLA20200098

Bai Zhenxu, Chen Hui, Li Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion [J]. Infrared and Laser Engineering, 2021, 50(1): 20200098. (in Chinese) doi:  10.3788/IRLA20200098
[20] 白振旭, 陈晖, 张展鹏, et al. 百瓦级1.2/1.5μm双波长金刚石拉曼激光器(特邀) [J]. 红外与激光工程, 2021, 50(12): 204-10. doi:  10.3788/IRLA20210685

Bai Zhenxu, Chen Hui, Zhang Zhanpeng, et al. Hundred-watt dual-wavelength diamond Raman laserat 1.2/1.5 μm (Invited) [J]. Infrared and Laser Engineering, 2021, 50(12): 20210685. (in Chinese) doi:  10.3788/IRLA20210685
[21] 白振旭, 杨学宗, 陈晖, 等. 高功率金刚石激光技术研究进展(特邀) [J]. 红外与激光工程, 2020, 49(12): 9-21. doi:  10.3788/IRLA20201076

Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201076. (in Chinese) doi:  10.3788/IRLA20201076
[22] Wang Y, Peng W, Yang X, et al. Efficient operation near the quantum limit in external cavity diamond Raman laser [J]. Laser Physics, 2020, 30(9): 095002. doi:  10.1088/1555-6611/ab9d76
[23] Li M, Kitzler O, Spence D J. Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser [J]. Opt Express, 2020, 28(2): 1738-1744. doi:  10.1364/OE.380644
[24] Yang X, Kitzler O, Spence D J, et al. Single-frequency 620  nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain [J]. Opt Lett, 2019, 44(4): 839-842. doi:  10.1364/OL.44.000839
[25] Chen Y, Liu J, Zhu X, et al. Intracavity frequency-doubled pulsed diamond Raman laser emitting at 620 nm [J]. Appl Phys B, 2022, 128(10): 186. doi:  10.1007/s00340-022-07908-6
[26] Spence D J, Granados E, Mildren R P. Mode-locked picosecond diamond Raman laser [J]. Opt Lett, 2010, 35(4): 556-558. doi:  10.1364/OL.35.000556
[27] Sabella A, Piper J A, Mildren R P. Efficient conversion of a 1.064 μm Nd:YAG laser to the eye-safe region using a diamond Raman laser [J]. Opt Express, 2011, 19(23): 23554-23560. doi:  10.1364/OE.19.023554
[28] Mildren R P, Sabella A. Highly efficient diamond Raman laser [J]. Opt Lett, 2009, 34(18): 2811-2813. doi:  10.1364/OL.34.002811
[29] Tu H, Ma S, Hu Z, et al. Efficient monolithic diamond Raman yellow laser at 572.5 nm [J]. Optical Materials, 2021, 114: 110912. doi:  10.1016/j.optmat.2021.110912
[30] Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit [J]. Opt Lett, 2010, 35(23): 3874-3876. doi:  10.1364/OL.35.003874