[1] Cheng Yong, Guo Yanlong, Tang Huang, et al. Development trend of tactical laser weapons [J]. Laser & Optoelectronics Progress, 2016, 53: 110004. (in Chinese)
[2] 毅飞冲天. 美国海军成功测试LWSD激光武器, 击毁了一架无人机[EB/OL]. [2020-05-24]. https://m.sohu.com/a/397383643_601259?strategyid=00014.
[3] Li Yiyong, Wang Jianhua, Li Zhi. Development situation of high-energy laser weapons [J]. Journal of Ordnance Equipment Engineering, 2017, 38(6): 1-6. (in Chinese) doi:  10.11809/scbgxb2017.06.001
[4] 刘泽金. 大功率光纤激光研究进展与分析[C]//先进高功率高能激光技术与应用研讨会, 2017.
[5] 中国指挥与控制学会. 未来战争将进入激光武器时代, 美军发展四大新动向[EB/OL]. [2019-05-15]. https://m.sohu.com/a/314098810_358040.
[6] Zhang Dongyan, Zhang Jie. The latest development of laser weapon of Lockheed Martin [J]. Electro-optic Technology Application, 2019, 34(1): 1-5. (in Chinese)
[7] Cao Qiusheng, Lu Jing, Liu Jianguang, et al. From SHIELD to look into the anti-missile capability and technical challenge of airborne laser weapon [J]. Journal of CAEIT, 2019, 14(5): 443-451. (in Chinese) doi:  10.3969/j.issn.1673-5692.2019.05.001
[8] 伍尚慧. 美国高能激光武器最新发展现状及趋势[J]. 军事文摘, 2020(3): 40-44.
[9] OFweek激光网. 美国陆军授出1.3亿美元 300kW级激光武器合同[EB/OL]. https://laser.m.ofweek.com/2020-05/ART-240015-8130-30439931.html.
[10] He Qiyi, Zong Siguang. Research progress and consideration of shipborne laser weapon [J]. Laser & Infrared, 2017, 47(12): 1455-1460. (in Chinese) doi:  10.3969/j.issn.1001-5078.2017.12.001
[11] Ludewigt K, Riesbeck Th, Graf A, et al. 50kW laser weapon demonstrator of Rheinmetall Wafe Munition[C]//Proc of SPIE, 2013, 8898: 88980N.
[12] 王茜, 冯寒亮. 德国莱茵金属公司高能激光的发展现状[J]. 飞航导弹, 2017(7): 3-8.
[13] Rudolf Protz, Jürgen Zoz, Franz Geidek, et al. High-power beam combining-a step to a future laser weapon system[C]//Proc of SPIE, 2012, 8547: 854708.
[14] 郑大壮. 波音新力作: 反无人机激光武器系统[J]. 轻兵器, 2016(4): 53-54. doi:  10.3969/j.issn.1000-8810.2016.04.013
[15] 穆作栋. 美国“利爪”反无人机激光武器系统分析. 空天防务观察, 2019(7).
[16] 欧洲海豹萌新. 美激光武器对战100架无人机, 顷刻击落30架[EB/OL]. https://m.sohu.com/a/368117668_652261.
[17] Giesen A, Hügel H, VossA, et al. Scalable concept for diode-pumped high-power solid-state lasers [J]. Applied Physics B, 1994, 58(5): 365-372. doi:  10.1007/BF01081875
[18] Kalisky Y Y, Kalisky O. The status of high-power lasers and their applications in the battlefield [J]. Optical Engineering, 2010, 49(9): 091003. doi:  10.1117/1.3484954
[19] Yi Jiayu, Ru Bo, Cao Haixia, et al. Design and experiment on high-power direct-liquid-cooled thin-disk solid-state Laser [J]. Chinese Journal of Lasers, 2018, 45(12): 1201004. (in Chinese) doi:  10.3788/CJL201845.1201004
[20] Gan Qijun, Jiang Benxue, Zhang Pande, et al. Research progress of high average power solid-state lasers [J]. Laser & Optoelectronics Progress, 2017, 54: 010003. (in Chinese)
[21] McNaught S J, Komine H, Weiss S B, et al. 100kW coherently combined slab MOPAs[C]//Conference on Lasers and Electro Optics, 2009 and 2009 Conference on Quantum Electronics and Laser Science Conference, CLEO/QELS 2009, 2009: 1-2.
[22] Lei Xiaoli, Sun Ling, Liu Yang, et al. Laser with 100 kW output power developed by the Textron company [J]. Laser & Infrared, 2011, 41(9): 948-952. (in Chinese) doi:  10.3969/j.issn.1001-5078.2011.09.002
[23] Sweetman B. General atomic claims laser breakthrough [J]. Aviation Week & Space Technology, 2015, 177(3): 30-31.
[24] Graham Warwick. General atomics: third-gen electric laser weapon now ready [J]. Aviation Week & Space Technology, 2015, 3(1): 30-31.
[25] An Haixia, Deng Kun, Bi Zhiyue. Miniaturization and lightweight technology of high-power laser equipment [J]. Chinese Optics, 2017, 10(3): 321-330. (in Chinese) doi:  10.3788/co.20171003.0321
[26] Wang Chao, Tang Xiaojun, Xu Liujing, et al. Investigation on thermal effect of high power slab laser with 11kW [J]. Chinese Journal of Lasers, 2010, 37(11): 2807-2809. (in Chinese) doi:  10.3788/CJL20103711.2807
[27] Ding Xiaokang, Liu Yang, Zhang Weiqiao, et al. Yb: YAG surface-doped slab laser amplifier with laser power of 10 kW [J]. Laser & Infrared, 2020, 50(2): 157-160. (in Chinese)
[28] Gao Qingsong, Hu Hao, Pei Zhengping, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW [J]. Chinese Journal of Lasers, 2012, 39(2): 0202001. (in Chinese) doi:  10.3788/CJL201239.0202001
[29] Wang Juntao, Tong Lixin, Xu Liu, et al. 5kW end-pumped Nd: YAG slab lasers and beam quality improvement [J]. Chinese Journal of Lasers, 2018, 45(1): 0101003. (in Chinese) doi:  10.3788/CJL201845.0101003
[30] Tang Xiaojun, Wang Gang, Liu Jiao, et al. Development of high brightness solid-state laser technology [J]. Strategic Study of CAE, 2020, 22(3): 49-55. (in Chinese)
[31] Gao Qingsong, Zhou Tangjian, Shang Jianli, et al. High efficiency and compact Yb: YAG slab all-solid state laser at room temperature [J]. High Power Laser and Particle Beams, 2020, 32(12): 121009. (in Chinese)
[32] 郭亚丁. 高能固体激光自适应光学光束质量控制[C]. 成都: 第四届大气光学及自适应光学研讨会, 2019.

Guo Y D. Beam quality control technology for high energysolid laser system[C]//Chengdu: The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics, 2019. (in Chinese)
[33] Liu Jiao, Wang Juntao, Zhou Tangjian, et al. Analysis and developments of high-power planar waveguide lasers [J]. High Power Laser and Particle Beams, 2015, 27(6): 061015. (in Chinese) doi:  10.11884/HPLPB201527.061015
[34] Wang Juntao, Wu Zhenhai, Su Hua, et al. 1.5kW efficient CW Nd:YAG planar waveguide MOPA laser [J]. Optics Letters, 2017, 42(16): 3149-3152. doi:  10.1364/OL.42.003149
[35] 胡浩. 新型高平均功率固体激光研究进展[C]//合肥: 第五届光电防御技术及应用研讨会, 2020.
[36] Chen Xiaolong, He Yu, Xu Zhongwei, et al. Theoretical and experimental investigation of a 10-kW high-efficiency 1070-nm fiber amplifier [J]. Chinese Journal of Lasers, 2020, 47(10): 1006001. (in Chinese) doi:  10.3788/CJL202047.1006001
[37] Lin H H, Tang X, Li C Y, et al. Home-made single-fiber laser system achieved 10.6 kW laser output [J]. Chinese Journal of Lasers, 2018, 45(3): 0315001. (in Chinese) doi:  10.3788/CJL201845.0315001
[38] 巩马理, 闫平, 肖启榕. 高功率光纤激光器技术与发展未来[C]. 威海: 先进高功率高能激光技术与应用研讨会, 2017.

Gong M L, Yan P, Xiao Q R. High power fiber laser technology and future development[C]//Weihai: Seminar on Advanced High Power High Energy Laser Technology and Application, 2017. (in Chinese)
[39] Liu Zejin, Wang Hongyan, Xu Xiaojun. High energy diode pumped gas laser [J]. Chinese Journal of Lasers, 2021, 48(4): 0401001. (in Chinese) doi:  10.3788/CJL202148.0401001
[40] Syring J. Ballistic missile defense system update[R/OL]. [2016-02-24]. https://www.csis.org/events/ballistic-missile-defense-system-update-1.
[41] Ronald O R. Navy shipboard lasers for surface, air, and missile defense: background and issues for congress[EB/OL]. (2012-06-29)[2014-10-11]. http://www.crs.gov/.
[42] Ren Guoguang, Yi Weiwei, Qu Changhong. High-power fiber lasers and their applications in tactical laser weapons [J]. Laser& Infrared, 2015, 45(10): 1145-1151. (in Chinese) doi:  10.3969/j.issn.1001-5078.2015.10.001
[43] Rudolf Protz, Jürgen Zoz, Franz Geidek, et al. High-power beam combining-a step to a future laser weapon system[C]//High-Power Lasers 2012: Technology and Systems, Proc of SPIE, 2012, 8547: 854708.
[44] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proceedings of SPIE, 2016, 9730: 97300Y.
[45] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6kW common aperture spectral beam combination syatem based on multi-channel narrow-linewidth fiber lasers [J]. Chinese Journal of Lasers, 2016, 43(9): 0901009. (in Chinese) doi:  10.3788/CJL201643.0901009
[46] Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings [J]. Appl Opt, 2019, 58(30): 8339-8343. doi:  10.1364/AO.58.008339
[47] Zheng Ye, Yang Yifeng, Zhao Xiang, et al. Research progress on spectral beam combining technology of high-power fiber lasers [J]. Chinese Journal of Lasers, 2017, 44(2): 0201002. (in Chinese) doi:  10.3788/CJL201744.0201002
[48] 陈卫标. 光纤激光合成技术现状和展望[C]//合肥: 第五届光电防御技术及应用研讨会, 2020.
[49] Zhu Mengzhen, Wan Qiang, Liu Xu, et al. Study on coherent characteristic of solid state laser with corner cube resonator [J]. Inrared and Laser Engineering, 2016, 45(9): 0906008. (in Chinese) doi:  10.3788/IRLA201645.0906008
[50] Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers [J]. Chinese Journal of Lasers, 2017, 44(2): 0201001. (in Chinese) doi:  10.3788/CJL201744.0201001
[51] Missile Defense Agency. Department of defense fiscal year(FY)2017 president’s budget submission[Z/OL]. [2017-02-24]. http://www.docin.com/p-1477155476.html.
[52] Flores A, Ehrenreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//SPIE, 2016, 9728: 97281Y.
[53] 马鹏飞, 马阎星, 粟荣涛, 等. 8 kW级光纤激光优质高效相干合成(简讯)[J]. 红外与激光工程, 2020, 49(5): 20190577.
[54] 常洪祥, 常琦, 侯天悦, 等. 百束规模光纤激光相干合成(简讯)[J]. 中国激光, 2020, 47(9): 0916002.
[55] Zhi Dong, Ma Yanxing, Ma Pengfei, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere [J]. Infrared and Laser Engineering, 2019, 48(10): 1005007. (in Chinese) doi:  10.3788/IRLA201948.1005007
[56] Cheng Y, Liu X, Wan Q, et al. Mutual injection phase locking coherent combination of solid state lasers based on corner cube [J]. Optics Letters, 2013, 38(23): 5150-5152. doi:  10.1364/OL.38.005150
[57] Sun Bin, Zhu Mengzhen, Tan Chaoyong, et al. Latest progress of research on adjust-free solid state laser [J]. Infrared and Laser Engineering, 2014, 43(10): 3244-3251. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.10.013
[58] Cheng Yong, Zhu Mengzhen, Tang Huang, et al. High power solid state laser with corner cube retro-reflectors of mutual-injection confinement[C]//LIDAR Imaging Detection and Target Recognition, Proc of SPIE, 2017, 10605: 106052G.
[59] Rémi Soulard, Mark N Quinn, Toshiki Tajima, et al. ICAN: A novel laser architecture for space debris removal [J]. Acta Astronautica, 2014, 105: 192-200. doi:  10.1016/j.actaastro.2014.09.004
[60] Toshikazu Ebisuzaki, Mark N Quinn, Satoshi Wada, et al. Demonstration desighs for the remediation of space debris from the international Space Station [J]. Acta Astronautica, 2015, 112: 102-113. doi:  10.1016/j.actaastro.2015.03.004
[61] Optics Org. DARPA extends laser weapon range[EB/OL]. http://optics.org/news/5/3/13.
[62] Wang Huihua, Lin Longxin, Ye Xin. Progress an Tendency of high power slab lasers [J]. Infrared and Laser Engineering, 2020, 49(7): 20190456. (in Chinese) doi:  10.3788/IRLA20190456
[63] Ren Guoguang, Yi Weiwei, Qi Yu, et al. U. S. theater and strategic UVA-Borne laser weapon [J]. Laser & Optoelectronics Progress, 2017, 54: 100002. (in Chinese)
[64] Yi Quan, Sun Xianzhi, Yang Jianchang, et al. Analysis on the accuracy of tactical laser weapon [J]. Fire Control& Command Control, 2018, 43(6): 98-102. (in Chinese) doi:  10.3969/j.issn.1002-0640.2018.06.020
[65] Zhao Lei, Ji Ming, Zhao Zhenhai, et al. Primary-precise compounded control for stabilized platform in shipborne laser weapon [J]. Laser & Infrared, 2019, 49(1): 86-92. (in Chinese) doi:  10.3969/j.issn.1001-5078.2019.01.015
[66] Xu Guoliang, Zhao Shubin, Wang Yong. Technology analysis of shipborne high-energy laser weapon systems intercepting UAVs [J]. Modern Defence Technology, 2015, 43(5): 12-17. (in Chinese) doi:  10.3969/j.issn.1009-086x.2015.05.003
[67] David H Titterton. Military Laser Technology and Systems[M]. Cheng Yong translated. Beijing: National Defense Press, 2018. (in Chinese)
[68] Cheng Yong, Zhu Mengzhen, Ma Yunfeng, et al. Mechanism and effects of complex laser ablation [J]. Infrared and Laser Engineering, 2016, 45(11): 1105005. (in Chinese) doi:  10.3788/IRLA201645.1105005