[1] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams [J]. Advances in Optics and Photonics, 2015, 7(1): 66-106. doi:  10.1364/AOP.7.000066
[2] Zhu F, Huang S, Shao W, et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum [J]. Optics Communications, 2017, 396: 50-57. doi:  10.1016/j.optcom.2017.03.023
[3] Yao A M, Padgett M J. Orbital angular momentum: Origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2): 161-204. doi:  10.1364/AOP.3.000161
[4] Padgett M J, Bowman R. Tweezers with a twist [J]. Nature Photonics, 2011, 5(6): 343-348. doi:  10.1038/nphoton.2011.81
[5] Franke-Arnold S, Allen L, Padgett M J. Advances in optical angular momentum [J]. Laser and Photonics Reviews, 2008, 2(4): 299-313. doi:  10.1002/lpor.200810007
[6] Lu Xuanhui, Chen He, Zhao Chengliang. Research on vortex beams and optical vortices [J]. Infrared and Laser Engineering, 2007, S1: 174. (in Chinese)
[7] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185. doi:  10.1103/PhysRevA.45.8185
[8] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496. doi:  10.1038/nphoton.2012.138
[9] Nenad B, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548. doi:  10.1126/science.1237861
[10] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication [J]. Physical Review Letters, 2005, 94(15): 153901(1-4).
[11] Ren Y, Huang H, Xie G, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing [J]. Optics Letters, 2013, 38(20): 4062-4065. doi:  10.1364/OL.38.004062
[12] Zhu X L, Guo L, Zhu Q, et al. The propagation properties of a longitudinal orbital angular momentum multiplexing system in atmospheric turbulence [J]. IEEE Photonics Journal, 2018, 10(1): 112-114, 135.
[13] Yu Ce, Wang Tianshu, Zhang Ying, et al. Research on transmission performance on OAM beam and Gaussian beam in atmospheric turbulence channel [J]. Infrared and Laser Engineering, 2021, 50(8): 20200400. (in Chinese)
[14] Zhang Y, Wang P, Liu T, et al. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence [J]. Optics Express, 2018, 26(17): 22182-22196. doi:  10.1364/OE.26.022182
[15] Li S H, Chen S, Gao C Q, et al. Atmospheric turbulence compensation in orbital angular momentum communications: advances and perspectives [J]. Optics Communications, 2018, 408: 68-81. doi:  10.1016/j.optcom.2017.09.034
[16] Zhao S M, Wang L, Zou L, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing [J]. Optics Communications, 2016, 376: 92-98. doi:  10.1016/j.optcom.2016.04.075
[17] Zou Li, Wang Le, Zhang Shibing, et al. Compensation of orbital-angular-momentum multiplexed communication system with wavefront correction [J]. Journal on Communications, 2015, 36(10): 76-84. (in Chinese) doi:  10.11959/j.issn.1000-436x.2015264
[18] Zou L, Wang L, Zhao S M. Turbulence mitigation scheme based on spatial diversity in orbital-angular-momentum multiplexed system [J]. Optics Communications, 2017, 400: 123-127. doi:  10.1016/j.optcom.2017.05.022
[19] Gao Chunqing, Zhang Shikun, Fu Shiyao, et al. Adaptive optics wavefront correction techniques of vortex beams [J]. Infrared and Laser Engineering, 2017, 46(2): 0201001. (in Chinese)
[20] Aftab M, Choi H J, Liang R G, et al. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations [J]. Optics Express, 2018, 26(26): 34428-34441. doi:  10.1364/OE.26.034428
[21] Zhao S M, Leach J, Gong L Y, et al. Aberration corrections for free-space optical communications in atmosphere turbulence using Orbital Angular Momentum states [J]. Optics Express, 2012, 20(1): 452-461. doi:  10.1364/OE.20.000452
[22] Hu L J, Hu S W, Gong W, et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection [J]. Optics Express, 2019, 27(23): 33504-33517. doi:  10.1364/OE.27.033504
[23] Li M, Li Y, Han J, et al. Gerchberg–Saxton algorithm based phase correction in optical wireless communication [J]. Physical Communication, 2017, 25(2): 323-327.
[24] Fu S, Zhang S, Wang T, et al. Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm [J]. Optics Letters, 2016, 41(14): 3185-3188. doi:  10.1364/OL.41.003185
[25] Xie G, Ren Y, Huang H, et al. Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm [J]. Optics Letters, 2015, 40(7): 1197-1200. doi:  10.1364/OL.40.001197
[26] Xie Z L, Ma H T, He X J, et al. Adaptive piston correction of sparse aperture systems with stochastic parallel gradient descent algorithm [J]. Optics Express, 2018, 26(8): 9541-9551. doi:  10.1364/OE.26.009541
[27] Yang Ping, Xu Bing, Jiang Wenhan, et al. Study of a genetic algorithm used in an adaptive optical system [J]. Acta Optica Sinica, 2007, 27(7): 1628-1632. (in Chinese)
[28] Yu Zhan, Ma Haotong, Du Shaojun. Adaptive near-field beam shaping based on simulated annealing algorithm [J]. Acta Optica Sinica, 2011, 31(3): 163-167. (in Chinese)
[29] Li J, Zhang M, Wang D S, et al. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication [J]. Optics Express, 2018, 26(8): 10494-10508. doi:  10.1364/OE.26.010494
[30] Tian Q H, Li Z, Hu K, et al. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator [J]. Optics Express, 2018, 26(21): 27849-27864. doi:  10.1364/OE.26.027849
[31] Lane R G, Tallon M. Wave-front reconstruction using a Shack-Hartmann [J]. Applied Optics, 1992, 31(32): 6902-6906. doi:  10.1364/AO.31.006902
[32] Zhao S M, Leach J, Zheng B Y. Correction effect of Shark-Hartmann algorithm on turbulence aberrations for free space optical communications using orbital angular momentum[C]//International Conference on Communication Technology Proceedings, ICCT, 2010: 580-583.
[33] Ren Y, Xie G, Huang H, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence [J]. Optics Letters, 2014, 39(10): 2845-2848. doi:  10.1364/OL.39.002845
[34] Vorontsov M A, Sivokon V P. Stochastic-parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction [J]. Journal of the Optical Society of America A, 1998, 15(10): 2745-2758. doi:  10.1364/JOSAA.15.002745
[35] 王夏尧. 涡旋光束的自适应光学校正技术研究[D]. 西安理工大学, 2018.

Wang Xiayao. Research on adaptive optics correction technology of vortex beam[D]. Xi'an: Xi'an University of Technology, 2018. (in Chinese)
[36] Yin X L, Lin J L, Chang H, et al. A new version of Stochastic-parallel-gradient-descent algorithm (SPGD) for phase correction of a distorted orbital angular momentum (OAM) beam[C]//Proceedings of the SPIE, 2018: 106973B.
[37] LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. doi:  10.1038/nature14539
[38] Doster T, Watnik A T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks [J]. Applied Optics, 2017, 56(12): 3386-3396. doi:  10.1364/AO.56.003386
[39] Tian Q H, Lu C D, Liu B, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system [J]. Optics Express, 2019, 27(8): 10765-10776. doi:  10.1364/OE.27.010765
[40] Ma H M, Liu H Q, Qiao Y, et al. Numerical study of adaptive optics compensation based on Convolutional Neural Networks [J]. Optics Communications, 2019, 433: 283-289. doi:  10.1016/j.optcom.2018.10.036
[41] Liu J M, Wang P P, Zhang X K, et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication [J]. Optics Express, 2019, 27(12): 16671-16688. doi:  10.1364/OE.27.016671
[42] Zhai Y W, Fu S Y, Zhang J Q, et al. Turbulence aberration correction for vector vortex beams using deep neural networks on experimental data [J]. Optics Express, 2020, 28(5): 7515-7527. doi:  10.1364/OE.388526
[43] Zhao Y, Wang A, Zhu L, et al. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions [J]. Optics Letters, 2017, 42(22): 4699-4702. doi:  10.1364/OL.42.004699
[44] Cochenour B, Morgan K, Miller K, et al. Propagation of modulated optical beams carrying orbital angular momentum in turbid water [J]. Applied Optics, 2016, 55(31): C34-C38. doi:  10.1364/AO.55.000C34
[45] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing [J]. Optics Express, 2016, 24(9): 9794-9805. doi:  10.1364/OE.24.009794
[46] Yang Tianxing, Zhao Shengmei. Random phase screen model of ocean turbulence [J]. Acta Optica Sinica, 2017, 37(12): 1201001. (in Chinese)
[47] Pan S X, Wang L, Wang W N, et al. An effective way for simulating oceanic turbulence channel on the beam carrying orbital angular momentum [J]. Scientific Reports, 2019, 9(1): 14009. doi:  10.1038/s41598-019-50465-w
[48] Zhan H C, Wang L, Wang W N, et al. Experimental analysis of adaptive optics correction methods on the beam carrying orbital angular momentum mode through oceanic turbulence [J]. Optik, 2021, 240: 166990. doi:  10.1016/j.ijleo.2021.166990