[1] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light [J]. Nature, 1956, 177(4497): 27-29. doi:  10.1038/177027a0
[2] Hanbury Brown R, Twiss R Q. The question of correlation between photons in coherent light rays [J]. Nature, 1956, 178(4548): 1447-1448. doi:  10.1038/1781447a0
[3] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon "ghost'' interference and diffraction [J]. Physical Review Letters, 1995, 74(18): 3600-3603. doi:  10.1103/PhysRevLett.74.3600
[4] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429-R3432. doi:  10.1103/PhysRevA.52.R3429
[5] Bennink R S, Bentley S J, Boyd R W. "Two-photon'' coincidence imaging with a classical source [J]. Physical Review Letters, 2002, 89(11): 113601. doi:  10.1103/PhysRevLett.89.113601
[6] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction [J]. Physical Review Letters, 2004, 92(9): 093903. doi:  10.1103/PhysRevLett.92.093903
[7] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classicalcorrelation [J]. Physical Review Letters, 2004, 93(9): 093602. doi:  10.1103/PhysRevLett.93.093602
[8] Chen Huaijin, Asif M S, Sankaranarayanan A C, et al. FPA-CS: Focal plane array-based compressive imaging in short-wave infrared[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[9] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. doi:  10.1109/MSP.2007.914730
[10] Tong Z, Liu Z, Wang J, et al. Breaking Rayleigh’s criterion via discernibility in high-dimensional light-field space with snapshot ghost imaging [J]. arXiv, 2020: 2004.00135.
[11] Gong W, Han S. Experimental investigation of the quality of lenslesssuper-resolution ghost imaging via sparsity constraints [J]. Physics Letters A, 2012, 376(17): 1519-1522. doi:  10.1016/j.physleta.2012.03.027
[12] Li Longzhen, Yao Xuri, Liu Xuefeng, et al. Super-resolution ghost imaging via compressed sensing [J]. Acta Physica Sinica, 2014, 63(22): 224201. (in Chinese) doi:  10.7498/aps.63.224201
[13] Chen Z, Shi J, Li Y, et al. Super-resolution thermal ghost imaging based on deconvolution [J]. The European Physical Journal - Applied Physics, 2014, 67(1): 10501. doi:  10.1051/epjap/2014140122
[14] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints [J]. Applied Physics Letters, 2012, 101(14): 141123. doi:  10.1063/1.4757874
[15] Erkmen B I. Computational ghost imaging for remote sensing [J]. J Opt Soc Am A, 2012, 29(5): 782-789. doi:  10.1364/JOSAA.29.000782
[16] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging [J]. Physical Review A, 2013, 87(2): 023820. doi:  10.1103/PhysRevA.87.023820
[17] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors [J]. Science, 2013, 340(6134): 844-847. doi:  10.1126/science.1234454
[18] Liu Z, Tan S, Wu J, et al. Spectral camera based on ghost imaging via sparsity constraints [J]. Scientific Reports, 2016, 6(1): 25718. doi:  10.1038/srep25718
[19] Wang Y, Suo J, Fan J, et al. Hyperspectral computational ghost imaging via temporal multiplexing [J]. IEEE Photonics Technology Letters, 2016, 28(3): 288-291. doi:  10.1109/LPT.2015.2494878
[20] Li Meixuan, Zhang Siqi, Li Hong, et al. Research on the bandpass filter used for single-exposure multi-spectral ghost imaging system [J]. Infrared and Laser Engineering, 2020, 49(9): 20200169. (in Chinese) doi:  10.3788/IRLA20200169
[21] Huang Jian, Shi Dongfeng, Meng Wenwen, et al. Study on spectral encoded computational ghost imaging [J]. Infrared and Laser Engineering, 2021, 50(1): 20200120. (in Chinese) doi:  10.3788/IRLA20200120
[22] Chu C, Liu S, Liu Z, et al. Spectral polarization camera based on ghost imaging via sparsity constraints [J]. Appl Opt, 2021, 60(16): 4632-4638. doi:  10.1364/AO.417022
[23] Shi D, Hu S, Wang Y. Polarimetric ghost imaging [J]. Opt Lett, 2014, 39(5): 1231-1234. doi:  10.1364/OL.39.001231
[24] Zhu Y, Shi J, Yang Y, et al. Polarization difference ghost imaging [J]. Appl Opt, 2015, 54(6): 1279-84. doi:  10.1364/AO.54.001279
[25] Liu Y, Shi J, Zeng G. Single-photon-counting polarization ghost imaging [J]. Appl Opt, 2016, 55(36): 10347-10351. doi:  10.1364/AO.55.010347
[26] Kobata T, Nomura T. Digital holographic three-dimensional Mueller matrix imaging [J]. Appl Opt, 2015, 54(17): 5591-5596. doi:  10.1364/AO.54.005591
[27] Ye Z, Xiong J, Liu H C. Ghost difference imaging using one single-pixel detector [J]. Physical Review Applied, 2021, 15(3): 034035. doi:  10.1103/PhysRevApplied.15.034035
[28] Yu H, Lu R, Han S, et al. Fourier-transform ghost imaging with hard X rays [J]. Physical Review Letters, 2016, 117(11): 113901. doi:  10.1103/PhysRevLett.117.113901
[29] Pelliccia D, Rack A, Scheel M, et al. Experimental X-Ray Ghost Imaging [J]. Physical Review Letters, 2016, 117(11): 113902. doi:  10.1103/PhysRevLett.117.113902
[30] Klein Y, Schori A, Dolbnya I P, et al. X-ray computational ghost imaging with single-pixel detector [J]. Opt Express, 2019, 27(3): 3284-3293. doi:  10.1364/OE.27.003284
[31] Zhang A X, He Y H, Wu L A, et al. Tabletop x-ray ghost imaging with ultra-low radiation [J]. Optica, 2018, 5(4): 374-377. doi:  10.1364/OPTICA.5.000374
[32] Li S, Cropp F, Kabra K, et al. Electron ghost imaging [J]. Physical Review Letters, 2018, 121(11): 114801. doi:  10.1103/PhysRevLett.121.114801
[33] Khakimov R I, Henson B M, Shin D K, et al. Ghost imaging with atoms [J]. Nature, 2016, 540(7631): 100-103. doi:  10.1038/nature20154
[34] He Y H, Huang Y Y, Zeng Z R, et al. Single-pixel imaging with neutrons [J]. Science Bulletin, 2021, 66(2): 133-138. doi:  10.1016/j.scib.2020.09.030
[35] Kingston A M, Myers G R, Pelliccia D, et al. Neutron ghost imaging [J]. Physical Review A, 2020, 101(5): 053844. doi:  10.1103/PhysRevA.101.053844
[36] Li W, Tong Z, Xiao K, et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints [J]. Optica, 2019, 6(12): 1515-1523. doi:  10.1364/OPTICA.6.001515
[37] Tian N, Guo Q, Wang A, et al. Fluorescence ghost imaging with pseudothermal light [J]. Opt Lett, 2011, 36(16): 3302-3304. doi:  10.1364/OL.36.003302
[38] Tian Y, Ge H, Zhang X J, et al. Acoustic ghost imaging in the time domain [J]. Physical Review Applied, 2020, 13(6): 064044. doi:  10.1103/PhysRevApplied.13.064044
[39] Collaboration N A, Bøggild H, Boissevain J, et al. Two-kaon correlations in central Pb+Pb collisions at 158 A GeV/c [J]. Physical Review Letters, 2001, 87(11): 112301. doi:  10.1103/PhysRevLett.87.112301
[40] Adler S S, Afanasiev S, Aidala C, et al. Bose-Einstein correlations of charged pion pairs in Au+Au collisions at $\scriptsize{\sqrt {{\rm{sNN}}}} $=200 GeV [J]. Physical Review Letters, 2004, 93(15): 152302. doi:  10.1103/PhysRevLett.93.152302
[41] Gatti A, Brambilla E, Bache M, et al. Correlated imaging, quantum and classical [J]. Physical Review A, 2004, 70(1): 013802. doi:  10.1103/PhysRevA.70.013802
[42] Shechtman Y, Eldar Y C, Cohen O, et al. Phase retrieval with application to optical imaging: A contemporary overview [J]. IEEE Signal Processing Magazine, 2015, 32(3): 87-109. doi:  10.1109/MSP.2014.2352673
[43] Martienssen W, Spiller E. Coherence and fluctuations in light beams [J]. American Journal of Physics, 1964, 32(12): 919-926. doi:  10.1119/1.1970023
[44] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840. doi:  10.1103/PhysRevA.79.053840
[45] Shapiro J H. Computational ghost imaging[C]//Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009.
[46] Lu Minghai, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling based on digital micromirror device [J]. Acta Optica Sinica, 2011, 31(7): 0711002. (in Chinese) doi:  10.3788/AOS201131.0711002
[47] Arecchi F T. Measurement of the statistical distribution of gaussian and laser sources [J]. Physical Review Letters, 1965, 15(24): 912-916. doi:  10.1103/PhysRevLett.15.912
[48] Liu H, Cheng J, Han S. Cross spectral purity and its influence on ghost imaging experiments [J]. Optics Communications, 2007, 273(1): 50-53. doi:  10.1016/j.optcom.2006.12.025
[49] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light [J]. Opt Lett, 2005, 30(18): 2354-2356. doi:  10.1364/OL.30.002354
[50] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight [J]. Opt Lett, 2014, 39(8): 2314-2317. doi:  10.1364/OL.39.002314
[51] Giglio M, Carpineti M, Vailati A. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function g(r) [J]. Physical Review Letters, 2000, 85(7): 1416-1419. doi:  10.1103/PhysRevLett.85.1416
[52] Cerbino R, Peverini L, Potenza M A C, et al. X-ray-scattering information obtained from near-field speckle [J]. Nature Physics, 2008, 4(3): 238-243. doi:  10.1038/nphys837
[53] Arce G R, Brady D J, Carin L, et al. Compressive coded aperture spectral imaging: An introduction [J]. IEEE Signal Processing Magazine, 2014, 31(1): 105-115. doi:  10.1109/MSP.2013.2278763
[54] Antipa N, Kuo G, Heckel R, et al. DiffuserCam: lensless single-exposure 3 D imaging [J]. Optica, 2018, 5(1): 1-9. doi:  10.1364/OPTICA.5.000001
[55] Sahoo S K, Tang D, Dang C. Single-shot multispectral imaging with a monochromatic camera [J]. Optica, 2017, 4(10): 1209-1213. doi:  10.1364/OPTICA.4.001209
[56] Kwon H, Arbabi E, Kamali S M, et al. Computational complex optical field imaging using a designed metasurface diffuser [J]. Optica, 2018, 5(8): 924-931. doi:  10.1364/OPTICA.5.000924
[57] Li X, Greenberg J A, Gehm M E. Single-shot multispectral imaging through a thin scatterer [J]. Optica, 2019, 6(7): 864-871. doi:  10.1364/OPTICA.6.000864
[58] Monakhova K, Yanny K, Aggarwal N, et al. Spectral DiffuserCam: Lensless snapshot hyperspectral imaging with a spectral filter array [J]. Optica, 2020, 7(10): 1298-1307. doi:  10.1364/OPTICA.397214
[59] Zhu R, Yu H, Lu R, et al. Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints [J]. Opt Express, 2018, 26(3): 2181-2190. doi:  10.1364/OE.26.002181
[60] Cai Y, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation [J]. Physical Review E, 2005, 71(5): 056607. doi:  10.1103/PhysRevE.71.056607
[61] Liu H, Cheng J, Han S. Ghost imaging in Fourier space [J]. Journal of Applied Physics, 2007, 102(10): 103102. doi:  10.1063/1.2812597
[62] Shen Xia, Bai Yanfeng, Qin Tao, et al. Experimental investigation of quality of lensless ghost imaging with pseudo-thermal light [J]. Chinese Physics Letters, 2008, 25(11): 3968-3971. doi:  10.1088/0256-307X/25/11/036
[63] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603. doi:  10.1103/PhysRevLett.104.253603
[64] Erkmen B I, Shapiro J H. Signal-to-noise ratio of Gaussian-state ghost imaging [J]. Physical Review A, 2009, 79(2): 023833. doi:  10.1103/PhysRevA.79.023833
[65] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction [J]. Opt Express, 2010, 18(6): 5562-5573. doi:  10.1364/OE.18.005562
[66] Liu J. On the recovery conditions for practical ghost imaging with AMP algorithm [J]. Opt Express, 2018, 26(16): 20519-20533. doi:  10.1364/OE.26.020519
[67] Jalali S, Yuan X. Snapshot compressed sensing: Performance bounds and algorithms [J]. IEEE Transactions on Information Theory, 2019, 65(12): 8005-8024. doi:  10.1109/TIT.2019.2940666
[68] Yuan X, Brady D J, Katsaggelos A K. Snapshot compressive imaging: Theory, algorithms, and applications [J]. IEEE Signal Processing Magazine, 2021, 38(2): 65-88. doi:  10.1109/MSP.2020.3023869
[69] Fisher R A, Russell E J. On the mathematical foundations of theoretical statistics [J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 1922, 222(594-604): 309-368. doi:  10.1098/rsta.1922.0009
[70] Kay S M. Fundamentals of Statistical Signal Processing [M]. NJ: Prentice Hall, 2001.
[71] Katz O, Bromberg Y, Silberberg Y, et al. Compressive ghost imaging [J]. Applied Physics Letters, 2009, 95(13): 131110. doi:  10.1063/1.3238296
[72] Jiying L, Jubo Z, Chuan L, et al. High-quality quantum-imaging algorithm and experiment based on compressive sensing [J]. Opt Lett, 2010, 35(8): 1206-1208. doi:  10.1364/OL.35.001206
[73] Katkovnik V, Astola J. Compressive sensing computational ghost imaging [J]. J Opt Soc Am A, 2012, 29(8): 1556-1567. doi:  10.1364/JOSAA.29.001556
[74] Han S, Yu H, Shen X, et al. A review of ghost imaging via sparsity constraints [J]. Applied Sciences, 2018, 8(8): 1379. doi:  10.3390/app8081379
[75] Li Enrong, Chen Mingliang, Gong Wenlin, et al. Ghost imaging via compressive sampling based on digital micromirror device [J]. Acta Optica Sinica, 2013, 33(12): 1211003. (in Chinese) doi:  10.3788/AOS201333.1211003
[76] Li J, Luo B, Yang D, et al. Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification [J]. Science Bulletin, 2017, 62(10): 717-723. doi:  10.1016/j.scib.2017.04.008
[77] Hu C, Zhu R, Yu H, et al. Correspondence Fourier-transform ghost imaging [J]. Physical Review A, 2021, 103(4): 043717. doi:  10.1103/PhysRevA.103.043717
[78] Luo Kaihong, Huang Boqiang, Zheng Weimou, et al. Nonlocal imaging by conditional averaging of random reference measurements [J]. Chin Phys Lett, 2012, 29(7): 074216. doi:  10.1088/0256-307X/29/7/074216
[79] Li M-F, Zhang Y-R, Luo K-H, et al. Time-correspondence differential ghost imaging [J]. Physical Review A, 2013, 87(3): 033813. doi:  10.1103/PhysRevA.87.033813
[80] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862. doi:  10.1109/18.959265
[81] Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property [J]. IEEE Transactions on Information Theory, 2010, 56(9): 4395-4401. doi:  10.1109/TIT.2010.2054653
[82] Tropp J A. Greed is good: Algorithmic results for sparse approximation [J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242. doi:  10.1109/TIT.2004.834793
[83] Mandel L, Sudarshan E C G, Wolf E. Theory of photoelectric detection of light fluctuations [J]. Proceedings of the Physical Society, 1964, 84(3): 435-444. doi:  10.1088/0370-1328/84/3/313
[84] Kolaczyk E D, Nowak R D. Multiscale likelihood analysis and complexity penalized estimation [J]. The Annals of Statistics, 2004, 32(2): 500-527.
[85] Makitalo M, Foi A. Optimal inversion of the anscombe transformation in low-count poisson image denoising [J]. IEEE Transactions on Image Processing, 2011, 20(1): 99-109. doi:  10.1109/TIP.2010.2056693
[86] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light [J]. Physical Review Letters, 2005, 94(18): 183602. doi:  10.1103/PhysRevLett.94.183602
[87] Zhang M, Wei Q, Shen X, et al. Lensless Fourier-transform ghost imaging with classical incoherent light [J]. Physical Review A, 2007, 75(2): 021803. doi:  10.1103/PhysRevA.75.021803
[88] Bache M, Magatti D, Ferri F, et al. Coherent imaging of a pure phase object with classical incoherent light [J]. Physical Review A, 2006, 73(5): 053802. doi:  10.1103/PhysRevA.73.053802
[89] Gatti A, Bache M, Magatti D, et al. Coherent imaging with pseudo-thermal incoherent light [J]. Journal of Modern Optics, 2006, 53(5-6): 739-760. doi:  10.1080/09500340500147240
[90] Gong W, Han S. A method to improve the visibility of ghost images obtained by thermal light [J]. Physics Letters A, 2010, 374(8): 1005-1008. doi:  10.1016/j.physleta.2009.12.030
[91] Sun B, Welsh S S, Edgar M P, et al. Normalized ghost imaging [J]. Opt Express, 2012, 20(15): 16892-16901. doi:  10.1364/OE.20.016892
[92] Zhang C, Guo S, Cao J, et al. Object reconstitution using pseudo-inverse for ghost imaging [J]. Opt Express, 2014, 22(24): 30063-30073. doi:  10.1364/OE.22.030063
[93] Gong W. High-resolution pseudo-inverse ghost imaging [J]. Photon Res, 2015, 3(5): 234-237. doi:  10.1364/PRJ.3.000234
[94] Zhang X, Meng X, Yang X, et al. Singular value decomposition ghost imaging [J]. Opt Express, 2018, 26(10): 12948-12958. doi:  10.1364/OE.26.012948
[95] Tong Z, Liu Z, Hu C, et al. Preconditioned deconvolution method for high-resolution ghost imaging [J]. Photon Res, 2021, 9(6): 1069-1077. doi:  10.1364/PRJ.420326
[96] Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi:  10.1109/TIT.2006.871582
[97] Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal Encoding Strategies? [J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi:  10.1109/TIT.2006.885507
[98] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Scientific Reports, 2016, 6(1): 26133. doi:  10.1038/srep26133
[99] Wang H, Han S. Coherent ghost imaging based on sparsity constraint without phase-sensitive detection [J]. EPL (Europhysics Letters), 2012, 98(2): 24003. doi:  10.1209/0295-5075/98/24003
[100] Liu S, Liu Z, Wu J, et al. Hyperspectral ghost imaging camera based on a flat-field grating [J]. Opt Express, 2018, 26(13): 17705-17716. doi:  10.1364/OE.26.017705
[101] Gill R D, Levit B Y. Applications of the van trees inequality: A Bayesian Cramér-Rao bound [J]. Bernoulli, 1995, 1(1-2): 59-79.
[102] Davison A C, Hinkley D V. Bootstrap Methods and Their Application [M]. New York: Cambridge University Press, 1997.
[103] Tenorio L, Andersson F, de Hoop M, et al. Data analysis tools for uncertainty quantification of inverse problems [J]. Inverse Problems, 2011, 27(4): 045001. doi:  10.1088/0266-5611/27/4/045001
[104] Xu J, Li Q, Wang J. Multiple norms and boundary constraint enforced image deblurring via efficient MCMC algorithm [J]. IEEE Signal Processing Letters, 2020, 27: 41-45. doi:  10.1109/LSP.2019.2954001
[105] Cohen S, Tomasi C. Systems of Bilinear Equations [R]. California: Stanford University, 1997.
[106] Helstrom C. The detection and resolution of optical signals [J]. IEEE Transactions on Information Theory, 1964, 10(4): 275-287. doi:  10.1109/TIT.1964.1053702
[107] Kosarev E L. Shannon's superresolution limit for signal recovery [J]. Inverse Problems, 1990, 6(1): 55-76. doi:  10.1088/0266-5611/6/1/007
[108] Lucy L B. Resolution limits for deconvolved images [J]. The Astronomical Journal, 1992, 104: 1260. doi:  10.1086/116315
[109] Lucy L B. Statistical limits to super resolution [J]. Astronomy and Astrophysics, 1992, 261: 706.
[110] den Dekker A J, van den Bos A. Resolution: A survey [J]. J Opt Soc Am A, 1997, 14(3): 547-557. doi:  10.1364/JOSAA.14.000547
[111] Smith S T. Statistical resolution limits and the complexified Crame/spl acute/r-Rao bound [J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1597-1609. doi:  10.1109/TSP.2005.845426
[112] Tsang M. Quantum limits to optical point-source localization [J]. Optica, 2015, 2(7): 646-653. doi:  10.1364/OPTICA.2.000646
[113] Tsang M, Nair R, Lu X-M. Quantum theory of superresolution for two incoherent optical point sources [J]. Physical Review X, 2016, 6(3): 031033. doi:  10.1103/PhysRevX.6.031033
[114] Lu X-M, Krovi H, Nair R, et al. Quantum-optimal detection of one-versus-two incoherent optical sources with arbitrary separation [J]. NPJ Quantum Information, 2018, 4(1): 64. doi:  10.1038/s41534-018-0114-y
[115] 韩哲. 敏感性分析和凸优化理论在鬼成像中的应用研究 [D]; 北京邮电大学, 2020.

Han Zhe. Research on application of sensitivity analysis and convex optimization theory in ghost imaging[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. (in Chinese)
[116] Ben-Haim Z, Eldar Y C. On the constrained CramÉr–Rao bound with a singular fisher information matrix [J]. IEEE Signal Processing Letters, 2009, 16(6): 453-456. doi:  10.1109/LSP.2009.2016831