[1] Churnside J, McCarty B, Lu X. Subsurface ocean signals from an orbiting polarization Lidar [J]. Remote Sensing, 2013, 5: 3457-3475. doi:  10.3390/rs5073457
[2] Behrenfeld M, Hu Y, Malley R, et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar [J]. Nature Geoscience, 2017, 10(2): 118-122. doi:  10.1038/NGEO2861
[3] Sauzède R, Claustre H, Uitz J, et al. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient [J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2552-2571.
[4] Churnside J, Tatarskii V, Wilson J. Oceanographic Lidar attenuation coefficients and signal fluctuations measured from a ship in the southern California Bight [J]. Applied optics, 1998, 37: 3105-3112. doi:  10.1364/AO.37.003105
[5] Yan Huaibin. Retrieval of chlorophyll concentration in open sea by using CALIPSO lidar signal below the surface[D]. Qingdao: Ocean University of China, 2014. (in Chinese)
[6] Yu Suzhen, Wu Dong. Methods of ocean subsurface particulate backscattering coefficient retrieval from CALIOP measurements [J]. Journal of Atmosphere and Environmental Optics, 2019, 14(5): 367-373. (in Chinese)
[7] Winker D M , Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(11): 2310-2320. doi:  10.1175/2009JTECHA1281.1
[8] Hostetler C A, Behrenfeld M J, Hu Yongxiang, et al. Spaceborne lidar in the study of marine systems [J]. Annual Review of Marine Science, 2018, 10: 13.1-13.27.
[9] Bisson K M, Boss E, Werdell P J, et al. Particulate backscattering in the global ocean: A comparison of independent assessments [J]. Geophysical Research Letters, 2021, 48(2): e2020GL090909. doi:  10.1029/2020GL090909
[10] Li Ran, Wang Cheng, Su Guozhong, et al. Development and applications of spaceborne LiDAR [J]. Science & Technology Review, 2007(14): 58-63. (in Chinese)
[11] Liu Dong, Liu Qun, Bai Jian, et al. Data processing algorithms of the space-borne lidar CALIOP: a review [J]. Infrared and Laser Engineering, 2017, 46(12): 1202001. (in Chinese) doi:  10.3788/IRLA201746.1202001
[12] Hu Y. Ocean, land and meteorology studies using space-based lidar measurements[C]//Proceedings of the Remote'09: Proceedings of the 5th Wseas International Conference on Remote Sensing, 2009.
[13] Behrenfeld M, Hu Y, Hostetler C, et al. Space-based lidar measurements of global ocean carbon stocks [J]. Geophysical Research Letters, 2013, 40: 4355-4360. doi:  10.1002/grl.50816
[14] Lu Xiaomei, Hu Yongxiang, Trepte C, et al. Ocean subsurface studies with the CALIPSO spaceborne lidar [J]. Journal of Geophysical Research: Oceans, 2014, 119: 4305-4317. doi:  10.1002/2014JC009970
[15] Dionisi D, Brando V, Volpe G, et al. Seasonal distributions of ocean particulate optical properties from spaceborne lidar measurements in Mediterranean and Black sea [J]. Remote Sensing of Environment, 2020, 247: 111889. doi:  10.1016/j.rse.2020.111889
[16] Hu Y. Ocean color related studies using CALIPSO data[C]//Proceedings of the NASA Ocean Color Research Team Meeting, Seattle, F, 2007.
[17] Lu X, Hu Y, Pelon J, et al. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements [J]. Optics Express, 2016, 24: 29001. doi:  10.1364/OE.24.029001
[18] Behrenfeld M, Gaube P, Penna A, et al. Global satellite-observed daily vertical migrations of ocean animals [J]. Nature, 2019, 576(7786): 257-261. doi:  10.1038/s41586-019-1796-9
[19] Lacour L, Larouche R, Babin M. In situ evaluation of spaceborne CALIOP lidar measurements of the upper-ocean particle backscattering coefficient [J]. Optics Express, 2020, 28: 26989-26999.
[20] Hunt W H, Winker D M, Vaugh M A, et al. CALIPSO lidar description and performance assessment [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1214-1228.
[21] Li J, Hu Y, Huang J, et al. A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal [J]. Atmospheric Chemistry and Physics, 2011, 11(223): 2903-2916.
[22] Voss K J, Fry E S. Measurement of the Mueller matrix for ocean water [J]. Appl Opt, 1984, 23(23): 4427-4439. doi:  10.1364/AO.23.004427
[23] Kokhanovsky, Alexander A. Parameterization of the Mueller matrix of oceanic waters [J]. Journal of Geophysical Research Oceans, 2003, 108(C6): 3175. doi:  10.1029/2001JC001222
[24] Hu Y, Stamnes K, Vaughan M, et al. Sea surface wind speed estimation from space-based lidar measurements [J]. Atmospheric Chemistry and Physics, 2008, 8(13): 3593-3601.
[25] Churnside J H. Polarization effects on oceanographic lidar [J]. Optics Express, 2008, 16(2): 1196-1207.
[26] Sullivan J M, Twardowski M S. Angular shape of the oceanic particulate volume scattering function in the backward direction [J]. Applied Optics, 2009, 48(35): 6811-6819. doi:  10.1364/AO.48.006811
[27] McGill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar [J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D20). doi:  10.1029/2007JD008768
[28] He Yongxiang, Kathy P, Mark V, et al. Elevation information in tail (EIT) technique for lidar altimetry [J]. Optics Express, 2007, 15(22).
[29] Lu Xiaomei, Hu Yongxiang, Liu Zhaoyan, et al. CALIOP receiver transient response study[C]//Proceedings of the Polarization Science and Remote Sensing VI, 2013, 8873: 887316.
[30] Lu X, Hu Y. Estimation of particulate organic carbon in the ocean from space-based polarization lidar measurements[C]//Proceedings of the Ocean Remote Sensing and Monitoring from Space, F, 2014.
[31] Lu X, Hu Y, Yang Y, et al. Laser pulse bidirectional reflectance from CALIPSO mission [J]. Atmospheric Measurement Techniques, 2018, 11(6): 3281-3296.
[32] Josset D, Pelon J, Hu Y. Multi-instrument calibration method based on a multiwavelength ocean surface model [J]. Geoscience and Remote Sensing Letters, IEEE, 2010, 7(1): 195-199. doi:  10.1109/LGRS.2009.2030906
[33] Lu X, Hu Y, Yang Y, et al. Antarctic spring ice-edge blooms observed from space by ICESat-2 [J]. Remote Sensing of Environment, 2020, 245: 111827. doi:  10.1016/j.rse.2020.111827