[1] Borisov S M, Wolfbeis O S. Optical biosensors [J]. Chemical Reviews, 2008, 108(2): 423-461. doi:  10.1021/cr068105t
[2] Singh V, Hu J J, Agarwal A M, et al. Integrated optical sensors [J]. IEEE Photonics Journal, 2012, 4(2): 638-641. doi:  10.1109/JPHOT.2012.2192721
[3] Yan X, Li H X, Su X G. Review of optical sensors for pesticides [J]. Trac-Trends in Analytical Chemistry, 2018, 103: 1-20. doi:  10.1016/j.trac.2018.03.004
[4] Wang Q, Zhao W M. Optical methods of antibiotic residues detections: A comprehensive review [J]. Sensors and Actuators B-Chemical, 2018, 269: 238-256.
[5] Salek-Maghsoudi A, Vakhshiteh F, Torabi R, et al. Recent advances in biosensor technology in assessment of early diabetes biomarkers [J]. Biosensors & Bioelectronics, 2018, 99: 122-135.
[6] Khansili N, Rattu G, Krishna P M. Label-free optical biosensors for food and biological sensor applications [J]. Sensors and Actuators B-Chemical, 2018, 265: 35-49. doi:  10.1016/j.snb.2018.03.004
[7] Gao M K, Gao Y H, Tian M S, et al. Research on the application of optical sensor in quality and safety of agricultural products [J]. Chinese Journal of Analysis Laboratory, 2020, 39(10): 1225-1232. (in Chinese)
[8] Tariq A, Baydoun J, Remy C, et al. Fluorescent molecular probe based optical fiber sensor dedicated to pH measurement of concrete [J]. Sensors and Actuators B-Chemical, 2021, 327: 128906. doi:  10.1016/j.snb.2020.128906
[9] Simsir E A, Erdemir S, Tabakci M, et al. Nano-scale selective and sensitive optical sensor for metronidazole based on fluorescence quenching: 1H-Phenanthro[9, 10-d]imidazolyl-calix[4]arene fluorescent probe [J]. Analytica Chimica Acta, 2021, 1162: 338494. doi:  10.1016/j.aca.2021.338494
[10] Lin D, Zheng Z C, Wang Q W, et al. Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing [J]. Optics Express, 2016, 24(21): 24750-24759. doi:  10.1364/OE.24.024750
[11] Shvalya V, Filipic G, Zavasnik J, et al. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology [J]. Applied Physics Reviews, 2020, 7(3): 031307. doi:  10.1063/5.0015246
[12] Adao T, Hruska J, Padua L, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry [J]. Remote Sensing, 2017, 9(11): 1110. doi:  10.3390/rs9111110
[13] Mahlein A K, Kuska M T, Behmann J, et al. Hyperspectral sensors and imaging technologies in phytopathology: State of the art [J]. Annual Review of Phytopathology, 2018, 56: 535-558. doi:  10.1146/annurev-phyto-080417-050100
[14] Tokel O, Inci F, Demirci U. Advances in plasmonic technologies for point of care applications [J]. Chemical Reviews, 2014, 114(11): 5728-5752. doi:  10.1021/cr4000623
[15] Lopez G A, Estevez M C, Soler M, et al. Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration [J]. Nanophotonics, 2017, 6(1): 123-136. doi:  10.1515/nanoph-2016-0101
[16] Geng Z X, Zhang X, Fan Z Y, et al. Recent progress in optical biosensors based on smartphone platforms [J]. Sensors, 2017, 17(11): 2449. doi:  10.3390/s17112449
[17] Liang Y, Xu T. Integrated miniature plasmonic nanostructure sensors [J]. Physics, 2019, 48(1): 22-28. (in Chinese)
[18] Wang W P, Jin L. Research progress of on-chip spectrometer based on the silicon photonics platform [J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 333-342. (in Chinese)
[19] Yang Z Y, Albrow-Owen T, Cai W W, et al. Miniaturization of optical spectrometers [J]. Science, 2021, 371(6528): eabe0722. doi:  10.1126/science.abe0722
[20] Zhang L, Pan J, Zhang Z, et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers [J]. Opto-Electronic Advances, 2020, 3(3): 190022.
[21] Zheng Y, Wu Z F, Shum P P, et al. Sensing and lasing applications of whispering gallery mode microresonators [J]. Opto-Electronic Advances, 2018, 1(9): 180085.
[22] Hao Y F, Feng Z Y, Han C, et al. Application of high sensitive detection sensor chip in detection of brain glioma disease [J]. Infrared and Laser Engineering, 2021, 50(8): 20210279. (in Chinese)
[23] Hasan D, Lee C. Hybrid metamaterial absorber platform for sensing of CO2 gas at mid-IR [J]. Advanced Science, 2018, 5(5): 1700581. doi:  10.1002/advs.201700581
[24] Visser D, Choudhury B D, Krasovska I, et al. Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays [J]. Optics Express, 2017, 25(11): 12171-12181. doi:  10.1364/OE.25.012171
[25] Im H, Sutherland J N, Maynard J A, et al. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics [J]. Analytical Chemistry, 2012, 84(4): 1941-1947. doi:  10.1021/ac300070t
[26] Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip [J]. Nature, 2003, 421(6926): 925-928. doi:  10.1038/nature01371
[27] Rosenblum S, Lovsky Y, Arazi L, et al. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators [J]. Nature Communications, 2015, 6: 6788. doi:  10.1038/ncomms7788
[28] Hong L Y, Li H, Yang H, et al. Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS [J]. IEEE Journal of Solid-State Circuits, 2017, 52(9): 2388-2406. doi:  10.1109/JSSC.2017.2712612
[29] Zhu J G, Ozdemir S K, Xiao Y F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator [J]. Nature Photonics, 2010, 4(1): 46-49. doi:  10.1038/nphoton.2009.237
[30] Jin T N, Lin H Y G, Lin P T. Monolithically integrated Si-on-AIN mid-infrared photonic chips for real-time and label-free chemical sensing [J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42905-42911.
[31] Rodriguez-Saona L, Aykas D P, Borba K R, et al. Miniaturization of optical sensors and their potential for high-throughput screening of foods [J]. Current Opinion in Food Science, 2020, 31: 136-150. doi:  10.1016/j.cofs.2020.04.008
[32] Johann S, Mansurova M, Kohlhoff H, et al. Wireless mobile sensor device for in-situ measurements with multiple fluorescent sensors [C]//IEEE Sensors Conference, 2018: 1067-1070.
[33] Zhang J L, Khan I, Zhang Q W, et al. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor [J]. Biosensors & Bioelectronics, 2018, 99: 312-317.
[34] Xu X Y, Chen W J, Zhao G M, et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping [J]. Light-Science & Applications, 2018, 7: 62.
[35] Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces [J]. Science, 2018, 360(6393): 1105. doi:  10.1126/science.aas9768
[36] Estevez M C, Alvarez M, Lechuga L M. Integrated optical devices for lab-on-a-chip biosensing applications [J]. Laser & Photonics Reviews, 2012, 6(4): 463-487.
[37] Wang H, Zhang Y L, Wang W, et al. On-chip laser processing for the development of multifunctional microfluidic chips [J]. Laser & Photonics Reviews, 2017, 11(2): 1600116.
[38] Yavas O, Svedendahl M, Dobosz P, et al. On-a-chip biosensing based on all-dielectric nanoresonators [J]. Nano Letters, 2017, 17(7): 4421-4426. doi:  10.1021/acs.nanolett.7b01518
[39] Brown C, Goncharov A, Ballard Z S, et al. Neural network-based on-chip spectroscopy using a scalable plasmonic encoder [J]. ACS Nano, 2021, 15(4): 6305-6315. doi:  10.1021/acsnano.1c00079
[40] Garcia-Meca C, Lechago S, Brimont A, et al. On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices [J]. Light-Science & Applications, 2017, 6(9): e17053.
[41] Lin P T, Kwok S W, Lin H Y G, et al. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing [J]. Nano Letters, 2014, 14(1): 231-238. doi:  10.1021/nl403817z
[42] Acimovic S S, Sipova H, Emilsson G, et al. Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing [J]. Light-Science & Applications, 2017, 6(8): e17042.
[43] Lu C H, Shih T S, Shih P C, et al. Finger-powered agglutination lab chip with CMOS image sensing for rapid point-of-care diagnosis applications [J]. Lab on a Chip, 2020, 20(2): 424-433. doi:  10.1039/C9LC00961B
[44] Zhang Y, Wang G, Yang L, et al. Recent advances in gold nanostructures based biosensing and bioimaging [J]. Coordination Chemistry Reviews, 2018, 370: 1-21. doi:  10.1016/j.ccr.2018.05.005
[45] Blanchard-Dionne A P, Meunier M. Sensing with periodic nanohole arrays [J]. Advances in Optics and Photonics, 2017, 9(4): 891-940. doi:  10.1364/AOP.9.000891
[46] Brolo A G. Plasmonics for future biosensors [J]. Nature Photonics, 2012, 6(11): 709-713. doi:  10.1038/nphoton.2012.266
[47] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors [J]. Nature Materials, 2008, 7(6): 442-453. doi:  10.1038/nmat2162
[48] Zanchetta G, Lanfranco R, Giavazzi F, et al. Emerging applications of label-free optical biosensors [J]. Nanophotonics, 2017, 6(4): 627-645. doi:  10.1515/nanoph-2016-0158
[49] Xu Y, Bian J, Zhang W H. Principles and processes of nanometric localized-surface-plasmonic optical sensors [J]. Laser & Optoelectronics Progress, 2019, 56(20): 202407. (in Chinese)
[50] Ma Y M, Dong B W, Lee C K. Progress of infrared guided-wave nanophotonic sensors and devices [J]. Nano Convergence, 2020, 7: 12. doi:  10.1186/s40580-020-00222-x
[51] Song J F, Luo X S, Kee J S, et al. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor [J]. Optics Express, 2013, 21(15): 17931-17940. doi:  10.1364/OE.21.017931
[52] Dandin M, Abshire P, Smela E. Optical filtering technologies for integrated fluorescence sensors [J]. Lab on a Chip, 2007, 7(8): 955-977. doi:  10.1039/b704008c
[53] Chen Q, Liang L, Zheng Q L, et al. On-chip readout plasmonic mid-IR gas sensor [J]. Opto-Electronic Advances, 2020, 3(7): 07190040.
[54] Wen L, Liang L, Yang X G, et al. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrica readout in Au-Si nanojunctions [J]. ACS Nano, 2019, 13(6): 6963-6972. doi:  10.1021/acsnano.9b01914
[55] Schwarz B, Reininger P, Ristanic D, et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures [J]. Nature Communications, 2014, 5: 4085. doi:  10.1038/ncomms5085
[56] Du W, Wang T, Chu H S, et al. Highly efficient on-chip direct electronic-plasmonic transducers [J]. Nature Photonics, 2017, 11(10): 623-627. doi:  10.1038/s41566-017-0003-5
[57] Singh R, Su P, Kimerling L, et al. Towards on-chip mid infrared photonic aerosol spectroscopy [J]. Applied Physics Letters, 2018, 113(23): 231107. doi:  10.1063/1.5058694
[58] Shakoor A, Cheah B C, Hao D, et al. Plasmonic sensor monolithically integrated with a CMOS photodiode [J]. ACS Photonics, 2016, 3(10): 1926-1933. doi:  10.1021/acsphotonics.6b00442
[59] Zhao Y, Zhao J, Zhao Q. Review of no-core optical fiber sensor and applications [J]. Sensors and Actuators a-Physical, 2020, 313: 112160. doi:  10.1016/j.sna.2020.112160
[60] Caucheteur C, Guo T, Liu F, et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs [J]. Nature Communications, 2016, 7: 13371. doi:  10.1038/ncomms13371
[61] Mittal V, Mashanovich G Z, Wilkinson J S. Perspective on thin film waveguides for on-chip mid-infrared spectroscopy of liquid biochemical analytes [J]. Analytical Chemistry, 2020, 92(16): 10891-10901. doi:  10.1021/acs.analchem.0c01296
[62] Krupin O, Asiri H, Wang C, et al. Biosensing using straight long-range surface plasmon waveguides [J]. Optics Express, 2013, 21(1): 698-709. doi:  10.1364/OE.21.000698
[63] Tombez L, Zhang E J, Orcutt J S, et al. Methane absorption spectroscopy on a silicon photonic chip [J]. Optica, 2017, 4(11): 1322-1325. doi:  10.1364/OPTICA.4.001322
[64] Han Z, Singh V, Kita D, et al. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors [J]. Applied Physics Letters, 2016, 109(7): 071111. doi:  10.1063/1.4961532
[65] Su P, Han Z, Kita D, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector [J]. Applied Physics Letters, 2019, 114(5): 051103. doi:  10.1063/1.5053599
[66] Ma Y M, Chang Y H, Dong B W, et al. Heterogeneously integrated graphene/silicon/halide waveguide photodetectors toward chip-scale zero-bias long-wave infrared spectroscopic sensing [J]. ACS Nano, 2021, 15(6): 10084-10094. doi:  10.1021/acsnano.1c01859
[67] Lin H, Kim C S, Li L, et al. Monolithic chalcogenide glass waveguide integrated interband cascaded laser [J]. Optical Materials Express, 2021, 11(9): 2869-2876. doi:  10.1364/OME.435061
[68] Li L, Lin H T, Huang Y Z, et al. High-performance flexible waveguide-integrated photodetectors [J]. Optica, 2018, 5(1): 44-51. doi:  10.1364/OPTICA.5.000044
[69] Zhao H L, Baumgartner B, Raza A, et al. Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer [J]. Optics Letters, 2020, 45(2): 447-450. doi:  10.1364/OL.379469
[70] Vlk M, Datta A, Alberti S, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy [J]. Light-Science & Applications, 2021, 10(1): 26.
[71] Du Q Y, Luo Z Q, Zhong H K, et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide [J]. Photonics Research, 2018, 6(6): 506-510. doi:  10.1364/PRJ.6.000506
[72] Yoo K M, Midkiff J, Rostamian A, et al. InGaAs membrane waveguide: A promising platform for monolithic integrated mid-infrared optical gas sensor [J]. ACS Sensors, 2020, 5(3): 861-869. doi:  10.1021/acssensors.0c00180
[73] Wu Y B, Qu Z B, Osman A, et al. Nanometallic antenna-assisted amorphous silicon waveguide integrated bolometer for mid-infrared [J]. Optics Letters, 2021, 46(3): 677-680. doi:  10.1364/OL.412529
[74] Consani C, Ranacher C, Tortschanoff A, et al. Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter [J]. Sensors and Actuators B-Chemical, 2018, 274: 60-65. doi:  10.1016/j.snb.2018.07.096
[75] Chen W J, Ozdemir S K, Zhao G M, et al. Exceptional points enhance sensing in an optical microcavity [J]. Nature, 2017, 548(7666): 192-198. doi:  10.1038/nature23281
[76] Liu S, Sun W Z, Wang Y J, et al. End-fire injection of light into high-Q silicon microdisks [J]. Optica, 2018, 5(5): 612-616. doi:  10.1364/OPTICA.5.000612
[77] Xu Y, Bai P, Zhou X D, et al. Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth [J]. Advanced Optical Materials, 2019, 7(9): 1801433. doi:  10.1002/adom.201801433
[78] Liang L, Wen L, Jiang C P, et al. Research progress of terahertz sensor based on artificial microstructure [J]. Infrared and Laser Engineering, 2019, 48(2): 0203001. (in Chinese) doi:  10.3788/IRLA201948.0203001
[79] Liang L, Hu X, Wen L, et al. Unity integration of grating slot waveguide and microfluid for terahertz sensing [J]. Laser & Photonics Reviews, 2018, 12(11): 1800078.
[80] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species [J]. Chemical Reviews, 2008, 108(2): 462-493. doi:  10.1021/cr068107d
[81] Zang K, Zhang D K, Huo Y J, et al. Microring bio-chemical sensor with integrated low dark current Ge photodetector [J]. Applied Physics Letters, 2015, 106(10): 101111. doi:  10.1063/1.4915094
[82] Song J F, Luo X S, Tu X G, et al. Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors [J]. Optics Express, 2012, 20(4): 4189-4197. doi:  10.1364/OE.20.004189
[83] Wang R J, Sprengel S, Vasiliev A, et al. Widely tunable 2.3 μm III-V-on-silicon vernier lasers for broadband spectroscopic sensing [J]. Photonics Research, 2018, 6(9): 858-866. doi:  10.1364/PRJ.6.000858
[84] Cohen D A, Nolde J A, Pedretti A T, et al. Sensitivity and scattering in a monolithic heterodyned laser biochemical sensor [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(5): 1124-1131. doi:  10.1109/JSTQE.2003.819481
[85] Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode [J]. Nature Photonics, 2017, 11(5): 297-301. doi:  10.1038/nphoton.2017.56
[86] Wang Y, Chen S M, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon [J]. Optica, 2018, 5(5): 528-533. doi:  10.1364/OPTICA.5.000528
[87] Rong H S, Jones R, Liu A S, et al. A continuous-wave Raman silicon laser [J]. Nature, 2005, 433(7027): 725-728. doi:  10.1038/nature03346
[88] Cetin A E, Coskun A F, Galarreta B C, et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging [J]. Light-Science & Applications, 2014, 3: e122.
[89] Wang J W, Sanchez M M, Yin Y, et al. Silicon-based integrated label-free optofluidic biosensors: Latest advances and roadmap [J]. Advanced Materials Technologies, 2020, 5(6): 1901138. doi:  10.1002/admt.201901138
[90] Gopinath S C B. Biosensing applications of surface plasmon resonance-based Biacore technology [J]. Sensors and Actuators B-Chemical, 2010, 150(2): 722-733. doi:  10.1016/j.snb.2010.08.014
[91] Dattner Y, Yadid-Pecht O. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection [J]. Sensors, 2010, 10(5): 5014-5027. doi:  10.3390/s100505014
[92] Tokuda T, Matsuoka H, Tachikawa N, et al. CMOS sensor-based miniaturised in-line dual-functional optical analyser for high-speed, in situ chirality monitoring [J]. Sensors and Actuators B-Chemical, 2013, 176: 1032-1037. doi:  10.1016/j.snb.2012.09.042
[93] Bollschweiler L, English A, Baker R J, et al. Chip-scale nanophotonic chemical and biological sensors using CMOS process [C]//52nd IEEE International Midwest Symposium on Circuits and Systems, IEEE, 2009.
[94] Koppa S, Joo Y J, Venkataramasubramani M, et al. Nanoscale biosensor chip [C]//53rd Midwest Symposium on Circuits and Systems (MWSCAS 2010), IEEE, 2010.
[95] Mazzotta F, Wang G L, Hagglund C, et al. Nanoplasmonic biosensing with on-chip electrical detection [J]. Biosensors & Bioelectronics, 2010, 26(4): 1131-1136.
[96] Turker B, Guner H, Ayas S, et al. Grating coupler integrated photodiodes for plasmon resonance based sensing [J]. Lab on a Chip, 2011, 11(2): 282-287. doi:  10.1039/C0LC00081G
[97] Chen Q, Chitnis D, Walls K, et al. CMOS photodetectors integrated with plasmonic color filters [J]. IEEE Photonics Technology Letters, 2012, 24(3): 197-199. doi:  10.1109/LPT.2011.2176333
[98] Chen Q, Hu X, Wen L, et al. Nanophotonic image sensors [J]. Small, 2016, 12(36): 4922-4935. doi:  10.1002/smll.201600528
[99] Manley M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials [J]. Chemical Society Reviews, 2014, 43(24): 8200-8214. doi:  10.1039/C4CS00062E
[100] Augel L, Fischer I A, Dunbar L A, et al. Plasmonic nanohole arrays on Si-Ge heterostructures: An approach for integrated biosensors [C]//SPIE, 2015, 9724: 97240M.
[101] Augel L, Bechler S, Korner R, et al. An integrated plasmonic refractive index sensor: Al nanohole arrays on Ge PIN photodiodes [C]//IEEE International Electron Devices Meeting (IEDM), 2017: 896-897.
[102] Augel L, Kawaguchi Y, Bechler S, et al. Integrated collinear refractive index sensor with Ge PIN photodiodes [J]. ACS Photonics, 2018, 5(11): 4586-4593. doi:  10.1021/acsphotonics.8b01067
[103] Seiler S T, Rich I S, Lindquist N C. Direct spectral imaging of plasmonic nanohole arrays for real-time sensing [J]. Nanotechnology, 2016, 27(18): 184001. doi:  10.1088/0957-4484/27/18/184001
[104] Blockstein L, Yadid-Pecht O. Lensless miniature portable fluorometer for measurement of chlorophyll and CDOM in water using fluorescence contact imaging [J]. IEEE Photonics Journal, 2014, 6(3): 6600716.
[105] Maruyama Y, Sawada K, Takao H, et al. A novel filterless fluorescence detection sensor for DNA analysis [J]. IEEE Transactions on Electron Devices, 2006, 53(3): 553-558. doi:  10.1109/TED.2005.864385
[106] Nakazawa H, Ishida M, Sawada K. Multimodal bio-image sensor for real-time proton and fluorescence imaging [J]. Sensors and Actuators B-Chemical, 2013, 180: 14-20. doi:  10.1016/j.snb.2011.11.010
[107] Raissi F, Mirzakuchaki S, Jalili H M, et al. Room-temperature gas-sensing ability of PtSi/porous Si Schottky junctions [J]. Ieee Sensors Journal, 2006, 6(1): 146-150. doi:  10.1109/JSEN.2005.854146
[108] Augel L, Berkmann F, Latta D, et al. Optofluidic sensor system with Ge PIN photodetector for CMOS-compatible sensing [J]. Microfluidics and Nanofluidics, 2017, 21: 169. doi:  10.1007/s10404-017-2007-3
[109] Bora M, Celebi K, Zuniga J, et al. Near field detector for integrated surface plasmon resonance biosensor applications [J]. Optics Express, 2009, 17(1): 329-336. doi:  10.1364/OE.17.000329
[110] Park B, Yun S H, Cho C Y, et al. Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors [J]. Light-Science & Applications, 2014, 3: e222.
[111] Hu X, Xu G Q, Wen L, et al. Metamaterial absorber integrated microfluidic terahertz sensors [J]. Laser & Photonics Reviews, 2016, 10(6): 962-969.
[112] Liang L, Zheng Q L, Wen L, et al. Miniaturized spectroscopy with tunable and sensitive plasmonic structures [J]. Optics Letters, 2021, 46(17): 4264-4267. doi:  10.1364/OL.426624
[113] Guyot L, Blanchard-Dionne A P, Patskovsky S, et al. Integrated silicon-based nanoplasmonic sensor [J]. Optics Express, 2011, 19(10): 9962-9967. doi:  10.1364/OE.19.009962
[114] Alavirad M, Mousavi S S, Roy L, et al. Schottky-contact plasmonic dipole rectenna concept for biosensing [J]. Optics Express, 2013, 21(4): 4328-4347. doi:  10.1364/OE.21.004328
[115] Chen W J, Kan T, Ajiki Y, et al. NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR [J]. Optics Express, 2016, 24(22): 25797-25804. doi:  10.1364/OE.24.025797
[116] Ajiki Y, Kan T, Matsumoto K, et al. Electrically detectable surface plasmon resonance sensor by combining a gold grating and a silicon photodiode [J]. Applied Physics Express, 2018, 11: 022001. doi:  10.7567/APEX.11.022001
[117] Tsukagoshi T, Kuroda Y, Noda K, et al. Compact surface plasmon resonance system with Au/Si Schottky barrier [J]. Sensors, 2018, 18(2): 399. doi:  10.3390/s18020399
[118] Saito Y, Yamamoto Y, Kan T, et al. Electrical detection SPR sensor with grating coupled backside illumination [J]. Optics Express, 2019, 27(13): 17763-17770. doi:  10.1364/OE.27.017763
[119] Oshita M, Takahashi H, Ajiki Y, et al. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever [J]. ACS Photonics, 2020, 7(3): 673-679. doi:  10.1021/acsphotonics.9b01510
[120] Sammito D, De Salvador D, Zilio P, et al. Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors [J]. Nanoscale, 2014, 6(3): 1390-1397. doi:  10.1039/C3NR04666D
[121] Kojori H S, Ji Y W, Paik Y, et al. Monitoring interfacial lectin binding with nanomolar sensitivity using a plasmon field effect transistor [J]. Nanoscale, 2016, 8(39): 17357-17364. doi:  10.1039/C6NR05544C
[122] Tan X C, Zhang H, Li J Y, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors [J]. Nature Communications, 2020, 11: 5245. doi:  10.1038/s41467-020-19085-1
[123] Dao T D, Ishii S, Doan A T, et al. An on-chip quad-wavelength pyroelectric sensor for spectroscopic infrared sensing [J]. Advanced Science, 2019, 6(20): 1900579. doi:  10.1002/advs.201900579
[124] Wang P, Krasavin A V, Nasir M E, et al. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials [J]. Nature Nanotechnology, 2018, 13(2): 159-164. doi:  10.1038/s41565-017-0017-7
[125] Ciappesoni M, Cho S, Tian J, et al. Computational study for optimization of a plasmon FET as a molecular biosensor [J]. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV, 2018: 10506.
[126] Tan X C, Li J Y, Yang A, et al. Narrowband plasmonic metamaterial absorber integrated pyroelectric detectors towards infrared gas sensing [C]//Conference on Lasers and Electro-Optics (CLEO), 2018: FF2F. 4.
[127] Wang P, Nasir M E, Krasavin A V, et al. Optoelectronic synapses based on hot-electron-induced chemical processes [J]. Nano Letters, 2020, 20(3): 1536-1541. doi:  10.1021/acs.nanolett.9b03871
[128] Song H Y, Zhang W Y, Li H F, et al. Review of compact computational spectral information acquisition systems [J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(8): 1119-1133.
[129] Zheng Q L, Wen L, Chen Q. Research progress of computational microspectrometer based on speckle inspection [J]. Opto-Electronic Engineering, 2021, 48(3): 200183. (in Chinese)