[1] Vahala K J. Optical microcavities [J]. Nature, 2003, 424: 839-846. doi:  10.1038/nature01939
[2] Kippenberg T, Spillane S, Vahala K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity [J]. Phys Rev Lett, 2004, 93: 083904. doi:  10.1103/PhysRevLett.93.083904
[3] Savchenkov, A A, Matsko A B, Strekalov D, et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator [J]. Phys Rev Lett, 2004, 93: 243905. doi:  10.1103/PhysRevLett.93.243905
[4] Del’Haye, P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450: 1214-1217. doi:  10.1038/nature06401
[5] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology [J]. Nature, 2002, 416: 233. doi:  10.1038/416233a
[6] Cundiff S T, Ye J. Colloquium: Femtosecond optical frequency combs [J]. Rev Mod Phys, 2003, 75: 325. doi:  10.1103/RevModPhys.75.325
[7] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum [J]. Science, 2020, 369: eaay3676. doi:  10.1126/science.aay3676
[8] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science, 2000, 288: 635-639. doi:  10.1126/science.288.5466.635
[9] Grelu P, Akhmediev N. Dissipative solitons for modelocked lasers [J]. Nature Photonics, 2012, 6: 84-92. doi:  10.1038/nphoton.2011.345
[10] Herr T. Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. Nature Photonics, 2014, 8: 145-152. doi:  10.1038/nphoton.2013.343
[11] Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators [J]. Nature Photonics, 2015, 9: 594-600. doi:  10.1038/nphoton.2015.137
[12] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science, 2018, 361: eaan8083. doi:  10.1126/science.aan8083
[13] Suh M G, Vahala K. Gigahertz-repetition-rate soliton microcombs [J]. Optica, 2018, 5: 65-66. doi:  10.1364/OPTICA.5.000065
[14] Li Q, Briles T C, Westly D A, et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime [J]. Optica, 2017, 4: 193-203. doi:  10.1364/OPTICA.4.000193
[15] Pfeiffer M H, Herkommer C, Liu J Q, et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators [J]. Optica, 2017, 4: 684-691. doi:  10.1364/OPTICA.4.000684
[16] Li C H, Benedick A J, Fendel P, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cms−1 [J]. Nature, 2008, 452: 610-612. doi:  10.1038/nature06854
[17] Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations [J]. Science, 2008, 321: 1335-1337. doi:  10.1126/science.1161030
[18] Suh M G, Yi X, Lai Y H, et al. Searching for exoplanets using a microresonator astrocomb [J]. Nature Photonics, 2019, 13: 25. doi:  10.1038/s41566-018-0312-3
[19] Obrzud E, Rainer M, Harutyunyan A, et al. A microphotonic astrocomb [J]. Nature Photonics, 2019, 13: 31. doi:  10.1038/s41566-018-0309-y
[20] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications [J]. Nature, 2017, 546: 274. doi:  10.1038/nature22387
[21] Fülöp, A, Mazur M, Lorences-Riesgo A, et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators [J]. Nature Communications, 2018, 9: 1-8.
[22] Geng Y, Zhou H, Han X J, et al. Coherent optical communications using coherence-cloned kerr soliton microcombs [J]. Nature Communications, 2022, 13: 1070. doi:  10.1038/s41467-022-28712-y
[23] Liang W, Eliyahu D, Ilchenko V S, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator [J]. Nature Communications, 2015, 6: 7957. doi:  10.1038/ncomms8957
[24] Marpaung D, Yao J, Capmany J. Integrated microwave photonics [J]. Nature Photonics, 2019, 13: 80-90.
[25] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs [J]. Science, 2011, 332: 555-559. doi:  10.1126/science.1193968
[26] Brasch V, Geiselmann M, Herr T, et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation [J]. Science, 2016, 351: 357-360. doi:  10.1126/science.aad4811
[27] Wang P H, Jaramillo-Villegas J A, Xuan Y, et al. Intracavity characterization of micro-comb generation in the single-soliton regime [J]. Opt Express, 2016, 24: 10890-10897. doi:  10.1364/OE.24.010890
[28] Joshi C, Jang J K, Luke K, et al. Thermally controlled comb generation and soliton modelocking in microresonators [J]. Opt Lett, 2016, 41: 2565-2568. doi:  10.1364/OL.41.002565
[29] Yi X, Yang Q F, Yang K Y, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator [J]. Optica, 2015, 2: 1078-1085. doi:  10.1364/OPTICA.2.001078
[30] Xu Y, Lin Y, Nielsen A, et al. Harmonic and rational harmonic driving of microresonator soliton frequency combs [J]. Optica, 2020, 7: 940-946. doi:  10.1364/OPTICA.392571
[31] Yu M, Okawachi Y, Griffith A G, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator [J]. Optica, 2016, 3: 854-860. doi:  10.1364/OPTICA.3.000854
[32] Gong Z, Bruch A, Shen Mohan, et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators [J]. Opt Lett, 2018, 43: 4366-4369. doi:  10.1364/OL.43.004366
[33] He Y, Yang Q F, Ling J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb [J]. Optica, 2019, 6: 1138-1144. doi:  10.1364/OPTICA.6.001138
[34] Gong Z, Liu X, Xu Y, et al. Near-octave lithium niobate soliton microcomb [J]. Optica, 2020, 7: 1275-1278. doi:  10.1364/OPTICA.400994
[35] Pu M, Ottaviano L, Semenova E, et al. Efficient frequency comb generation in algaas-on-insulator [J]. Optica, 2016, 3: 823-826. doi:  10.1364/OPTICA.3.000823
[36] Chang L, Xie W Q, Shu H W, et al. Ultra-efficient frequency comb generation in algaas-on-insulator microresonators [J]. Nature Communications, 2020, 11: 1-8.
[37] Moille G, Chang L, Xie W Q, et al. Dissipative Kerr solitons in a III-V microresonator [J]. Laser & Photonics Reviews, 2020, 14: 2000022.
[38] Jung H, Yu S P, Carlson D R, et al. Tantala Kerr nonlinear integrated photonics [J]. Optica, 2021, 8: 811-817. doi:  10.1364/OPTICA.411968
[39] Zheng Y, Sun C Z, Xiong B, et al. Integrated gallium nitride nonlinear photonics[J]. arXiv, 2020: 2010.16149.
[40] Wilson D J, Schneider K, Honl S, et al. Integrated gallium phosphide nonlinear photonics [J]. Nature Photonics, 2020, 14: 57-62. doi:  10.1038/s41566-019-0537-9
[41] Lu Z, Chen H J, Wang W, et al. Synthesized soliton crystals [J]. Nature communications, 2021, 12: 1-7.
[42] Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs [J]. Nature, 2020, 582: 365-369. doi:  10.1038/s41586-020-2358-x
[43] Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator [J]. Nature, 2018, 562: 401-405. doi:  10.1038/s41586-018-0598-9
[44] Xiang C, Liu J, Guo J, et al. Laser soliton microcombs heterogeneously integrated on silicon [J]. Science, 2021, 373: 99-103. doi:  10.1126/science.abh2076
[45] Bao C, Yang C. Mode-pulling and phase-matching in broadband Kerr frequency comb generation [J]. JOSA B, 2014, 31: 3074-3080. doi:  10.1364/JOSAB.31.003074
[46] Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators [J]. Nature Physics, 2017, 13: 94-102. doi:  10.1038/nphys3893
[47] Bao C, Xuan Y, Jaramillo-Villegas J A, et al. Direct soliton generation in microresonators [J]. Optics Letters, 2017, 42: 2519-2522. doi:  10.1364/OL.42.002519
[48] Yi X, Yang Q F, Yang K Y, et al. Active capture and stabilization of temporal solitons in microresonators [J]. Optics Letters, 2016, 41: 2037-2040. doi:  10.1364/OL.41.002037
[49] Stone J R, Briles T C, Drake T E, et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs [J]. Physical Review Letters, 2018, 121: 063902. doi:  10.1103/PhysRevLett.121.063902
[50] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities [J]. Light: Science & Applications, 2019, 8: 1-10.
[51] Zhang S, Silver J M, Del Bino L, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser [J]. Optica, 2019, 6: 206-212. doi:  10.1364/OPTICA.6.000206
[52] Pavlov N G, Koptyaev S, Lihachev G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes [J]. Nature Photonics, 2018, 12: 694-698. doi:  10.1038/s41566-018-0277-2
[53] Bao C, Xuan Y, Leaird D E, et al. Spatial mode-interaction induced single soliton generation in microresonators [J]. Optica, 2017, 4: 1011-1015. doi:  10.1364/OPTICA.4.001011
[54] Herr T, Brasch V, Jost J D, et al. Mode spectrum and temporal soliton formation in optical microresonators [J]. Physical Review Letters, 2014, 113: 123901. doi:  10.1103/PhysRevLett.113.123901
[55] Spencer D T, Drake T, Briles T C, et al. An integrated-photonics optical-frequency synthesizer [J]. Nature, 2017, 557: 81.
[56] Newman Z L, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock [J]. Optica, 2019, 6: 680-685. doi:  10.1364/OPTICA.6.000680
[57] Karpov M, Guo H, Kordts A, et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator [J]. Physical Review Letters, 2016, 116: 103902. doi:  10.1103/PhysRevLett.116.103902
[58] Yi X, Yang Q F, Yang K Y, et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities [J]. Optics Letters, 2016, 41: 3419-3422. doi:  10.1364/OL.41.003419
[59] Yao S, Wei Z, Guo Y, et al. Self-frequency shift of AlN-on-sapphire Kerr solitons [J]. Optics Letters, 2021, 46: 5312-5315. doi:  10.1364/OL.441696
[60] Yi X, Yang Q F, Zhang X, et al. Single-mode dispersive waves and soliton microcomb dynamics [J]. Nature Communications, 2017, 8: 1-9.
[61] Matsko A B, Maleki L. On timing jitter of mode locked Kerr frequency combs [J]. Optics Express, 2013, 21: 28862-28876. doi:  10.1364/OE.21.028862
[62] Bao C, Suh M G, Shen B, et al. Quantum diffusion of microcavity solitons [J]. Nature Physics, 2021, 17: 462-466. doi:  10.1038/s41567-020-01152-5
[63] Jia K, Wang X, Kwon D, et al. Photonic flywheel in a monolithic fiber resonator [J]. Physical Review Letters, 2020, 125: 143902. doi:  10.1103/PhysRevLett.125.143902
[64] Jeong D, Kwon D, Jeon I, et al. Ultralow jitter silica microcomb [J]. Optica, 2020, 7: 1108-1111. doi:  10.1364/OPTICA.390944
[65] Bao C, Yang C. Carrier-envelope phase dynamics of cavity solitons: Scaling law and soliton stability [J]. Physical Review A, 2015, 92: 053831. doi:  10.1103/PhysRevA.92.053831
[66] Matsko A B, Savchenkov A A, Maleki L. On excitation of breather solitons in an optical microresonator [J]. Optics Letters, 2012, 37: 4856-4858. doi:  10.1364/OL.37.004856
[67] Bao C, Jaramillo-Villegas J A, Xuan Y, et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator [J]. Physical Review Letters, 2016, 117: 163901. doi:  10.1103/PhysRevLett.117.163901
[68] Lucas E, Karpov M, Guo H, et al. Breathing dissipative solitons in optical microresonators [J]. Nature Communications, 2017, 8: 1-11.
[69] Yu M, Jang J K, Okawachi Y, et al. Breather soliton dynamics in microresonators [J]. Nature Communications, 2017, 8: 1-7. doi:  10.1038/s41467-016-0009-6
[70] Yi X, Yang Q F, Yang K Y, et al. Imaging soliton dynamics in optical microcavities [J]. Nature Communications, 2018, 9: 1-8. doi:  10.1038/s41467-017-02088-w
[71] Bao C, Xuan Y, Wang C, et al. Observation of breathing dark pulses in normal dispersion optical microresonators [J]. Physical Review Letters, 2018, 121: 257401. doi:  10.1103/PhysRevLett.121.257401
[72] Yao S, Bao C, Wang P, et al. Generation of stable and breathing flat-top solitons via Raman assisted four wave mixing in microresonators [J]. Physical Review A, 2020, 101: 023833. doi:  10.1103/PhysRevA.101.023833
[73] Yao B, Huang S W, Liu Y, et al. Gate-tunable frequency combs in graphene–nitride microresonators [J]. Nature, 2018, 558: 410-414. doi:  10.1038/s41586-018-0216-x
[74] Stegeman G I, Segev M. Optical spatial solitons and their interactions: universality and diversity [J]. Science, 1999, 286: 1518-1523. doi:  10.1126/science.286.5444.1518
[75] Weng W, Bouchand R, Lucas E, et al. Heteronuclear soliton molecules in optical microresonators [J]. Nature Communications, 2020, 11: 1-9. doi:  10.1038/s41467-019-13993-7
[76] Yang Q F, Yi X, Yang K Y, et al. Stokes solitons in optical microcavities [J]. Nature Physics, 2017, 13: 53-57. doi:  10.1038/nphys3875
[77] Jang J K, Erkintalo M, Coen S, et al. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons [J]. Nature Communications, 2015, 6: 1-7.
[78] Taheri H, Matsko A B, Maleki L. Optical lattice trap for Kerr solitons [J]. The European Physical Journal D, 2017, 71: 1-13. doi:  10.1140/epjd/e2016-70680-8
[79] Wang Y, Leo F, Fatome J, et al. Universal mechanism for the binding of temporal cavity solitons [J]. Optica, 2017, 4: 855-863. doi:  10.1364/OPTICA.4.000855
[80] Karpov M, Pfeiffer M H P, Guo H, et al. Dynamics of soliton crystals in optical microresonators [J]. Nature Physics, 2019, 15: 1071-1077. doi:  10.1038/s41567-019-0635-0
[81] Yang Q F, Yi X, Yang K Y, et al. Counter-propagating solitons in microresonators [J]. Nature Photonics, 2017, 11: 560-564. doi:  10.1038/nphoton.2017.117
[82] Bao C, Shen B, Suh M G, et al. Oscillatory motion of a counterpropagating Kerr soliton dimer [J]. Physical Review A, 2021, 103: L011501. doi:  10.1103/PhysRevA.103.L011501
[83] Lucas E, Lihachev G, Bouchand R, et al. Spatial multiplexing of soliton microcombs [J]. Nature Photonics, 2018, 12: 699-705. doi:  10.1038/s41566-018-0256-7
[84] Jang J K, Klenner A, Ji X, et al. Synchronization of coupled optical microresonators [J]. Nature Photonics, 2018, 12: 688-693. doi:  10.1038/s41566-018-0261-x
[85] Kim B Y, Jang J K, Okawachi Y, et al. Synchronization of nonsolitonic Kerr combs [J]. Science Advances, 2021, 7: eabi4362. doi:  10.1126/sciadv.abi4362
[86] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy [J]. Optica, 2016, 3: 414-426. doi:  10.1364/OPTICA.3.000414
[87] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy [J]. Science, 2016, 354: 600-603. doi:  10.1126/science.aah6516
[88] Dutt A, Joshi C, Ji X, et al. On-chip dual-comb source for spectroscopy [J]. Science Advances, 2018, 4: e1701858. doi:  10.1126/sciadv.1701858
[89] Yang Q F, Shen B, Wang H, et al. Vernier spectrometer using counterpropagating soliton microcombs [J]. Science, 2019, 363: 965-968. doi:  10.1126/science.aaw2317
[90] Bao C, Suh M G, Vahala K. Microresonator soliton dual-comb imaging [J]. Optica, 2019, 6: 1110-1116. doi:  10.1364/OPTICA.6.001110
[91] Suh M G, Vahala K J. Soliton microcomb range measurement [J]. Science, 2018, 359: 884-887. doi:  10.1126/science.aao1968
[92] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs [J]. Science, 2018, 359: 887-891. doi:  10.1126/science.aao3924
[93] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs [J]. Nature Photonics, 2012, 6: 440-449. doi:  10.1038/nphoton.2012.142
[94] Wang C Y, Herr T, Del’Haye P, et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators [J]. Nature Communications, 2013, 4: 1-7.
[95] Griffith A G, Lau R K W, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation [J]. Nature Communications, 2015, 6: 1-5.
[96] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy [J]. Nature Commu-nications, 2018, 9: 1-6.
[97] Luke K, Okawachi Y, Lamont M R E, et al. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator [J]. Optics Letters, 2015, 40: 4823-4826. doi:  10.1364/OL.40.004823
[98] Yan M, Luo P L, Iwakuni K, et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators [J]. Light: Science & Applications, 2017, 6: e17076.
[99] Kowligy A S, Carlson D R, Hickstein D D, et al. Mid-infrared frequency combs at 10 GHz [J]. Optics Letters, 2020, 45: 3677-3680. doi:  10.1364/OL.391651
[100] Timmers H, Kowligy A, Lind A, et al. Molecular fingerprinting with bright, broadband infrared frequency combs [J]. Optica, 2018, 5: 727-732. doi:  10.1364/OPTICA.5.000727
[101] Bao C, Yuan Z, Wang H, et al. Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared [J]. Optica, 2020, 7: 309-315. doi:  10.1364/OPTICA.382992
[102] Bao C, Yuan Z, Wu L, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy [J]. Nature Communications, 2021, 12: 1-8. doi:  10.1038/s41467-020-20314-w
[103] Cingöz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet [J]. Nature, 2012, 482: 68-71. doi:  10.1038/nature10711
[104] Guidry M A, Lukin D M, Yang K Y, et al. Quantum optics of soliton microcombs [J]. Nature Photonics, 2022, 16: 52-58. doi:  10.1038/s41566-021-00901-z