[1] Ehrenreich T, Zhdanov B, Takekoshi T, et al. Diode pumped caesium laser [J]. Electronics Letters, 2005, 41(7): 415-416. doi:  10.1049/el:20058388
[2] Page R H, Beach R J, Kanz V K, et al. First Demonstration of a Diode-Pumped Gas (Alkali Vapor) Laser[C]//Conference on Lasers & Electro-optics, 2005, CMAA1.
[3] Zhdanov B V, Shaffer M K, Knize R J. Demonstration of a diode pumped continuous wave potassium laser[C]//Spie Lase, 2011, 7915: 791506.
[4] Zhdanov B V, Knize R J. Hydrocarbon-free potassium laser [J]. Electronics Letters, 2007, 43(19): 1024-1025. doi:  10.1049/el:20071587
[5] Zweiback J, Komashko A, Krupke W F. Alkali-vapor lasers[C]//Average Power Lasers and Intense Beam Applications IV, 2010, 2010, 7581: 75810G.
[6] Krupke W F. Diode pumped alkali lasers (DPALs)—A review (rev1) [J]. Progress in Quantum Electronics, 2012, 36(1): 4-28. doi:  10.1016/j.pquantelec.2011.09.001
[7] Zhdanov B V, Knize R J. Review of alkali laser research and development [J]. Optical Engineering, 2013, 52(2): 021010.
[8] Gao F, Chen F, Xie J J, et al. Review on diode-pumped alkali vapor laser [J]. Optik - International Journal for Light and Electron Optics, 2013, 124(20): 4353-4358. doi:  10.1016/j.ijleo.2013.01.061
[9] Pitz G A, Anderson M D. Recent advances in optically pumped alkali lasers [J]. Applied physics reviews, 2017, 4(4): 041101. doi:  10.1063/1.5006913
[10] Krupke W F. Diode-pumped Alkali laser[P]. 6, 643, 311, 2003.
[11] Krupke W F, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser [J]. Optics Letters, 2003, 28(23): 2336-2338. doi:  10.1364/OL.28.002336
[12] Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser [J]. Optics Communications, 2006, 260(2): 696-698. doi:  10.1016/j.optcom.2005.11.042
[13] Hurd E J, Holtgrave J C, Perram G P. Intensity scaling of an optically pumped potassium laser [J]. Optics Communications, 2015, 357: 63-66. doi:  10.1016/j.optcom.2015.08.087
[14] Zhdanov B V, Shaffer M K, Knize R J. Cs laser with unstable cavity transversely pumped by multiple diode lasers [J]. Optics Express, 2009, 17(17): 14767-14770. doi:  10.1364/OE.17.014767
[15] Fox C, Perram G. Temperature gradients in diode-pumped alkali lasers[R].Air force Inst of tech wright-patterson afboh school of engineering and management/dept of engineering physics, 2012.
[16] Zhang W, Wang Y, Cai H, et al. Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes [J]. Applied Optics, 2014, 53(19): 4180-4186. doi:  10.1364/AO.53.004180
[17] Weeks D E, Lewis C D, Schlie L A, et al. Temperature dependence of the fine structure mixing induced by He−4 and He−3 in K and Rb Diode Pumped Alkali Lasers [J]. Applied Physics B-Lasers and Optics, 2020, 126(5): 1-10.
[18] Beach R J, Krupke W F, Kanz V K, et al. End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling [J]. Journal of the Optical Society of America B, 2004, 21(12): 2151-2163. doi:  10.1364/JOSAB.21.002151
[19] Liu Y, Pan B, Yang J, et al. Thermal effects in high-power double diode-end-pumped Cs vapor lasers [J]. IEEE Journal of Quantum Electronics, 2012, 48(4): 485-489. doi:  10.1109/JQE.2012.2185685
[20] Shaffer M K, Lilly T C, Zhdanov B V, et al. In situ non-perturbative temperature measurement in a Cs alkali laser [J]. Optics Letters, 2015, 40(1): 119-122. doi:  10.1364/OL.40.000119
[21] Auslender I, Yacoby E, Barmashenko B D, et al. Controlling the beam quality in DPALs by changing the resonator parameters [J]. Applied Physics B, 2020, 126(5): 1-6.
[22] Petersen A, Lane R. Second harmonic operation of diode-pumped Rb vapor lasers[C]//High-Power Laser Ablation VII, 2008, 7005: 700529.
[23] Bogachev A V, Garanin S G, Dudov A M, et al. Diode-pumped caesium vapour laserwith closed-cycle laser-active medium circulation [J]. Quantum Electronics, 2012, 42(2): 95-98. doi:  10.1070/QE2012v042n02ABEH014734
[24] Hostutler D. Characterization of a diode pumped alkali laser with a flowing gain medium[C]//HPLS&A 2016 Conference, 2016: 5-9.
[25] 任国光, 伊炜伟, 齐予, 等. 美国战区和战略无人机载激光武器[J]. 激光与光电子学进展, 2017, 54(10): 100002.1-100002.8.

Ren Guoguang, Yi Weiwei, Qi Yu, et al. U.S. theater and strategic UVA-borne laser weapon [J]. Laser&Optoelectronics Progress, 2017, 54(10): 100002.1-100002.8. (in Chinese)
[26] Zediker M S, Makki S, Faircloth B O, et al. Control system for high power laser drilling workover and completion unit[P]. 9, 027, 668, 2015.
[27] Xu Yao. Modeling and simulation of Flowing-DPAL[D]. Changsha: National University of Defense Technology: 2013. (in Chinese)
[28] Shen B, Huang J, Xu X, et al. Modeling of steady-state temperature distribution in diode-pumped Alkali vapor lasers: analysis of the experimental results [J]. IEEE Journal of Quantum Electronics, 2017: 1-7.
[29] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Measurements of the gain medium temperature in an operating Cs DPAL [J]. Optics Express, 2016, 24(17): 19286-19292. doi:  10.1364/OE.24.019286
[30] Eyal Y, Ilya A, Karol W, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies [J]. Optics Express, 2018, 26(14): 17814-17819. doi:  10.1364/OE.26.017814
[31] Barmashenko B D, Rosenwaks S. Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers [J]. Journal of the Optical Society of America B, 2013, 30(5): 1118-1126. doi:  10.1364/JOSAB.30.001118
[32] Barmashenko B D, Rosenwaks S, Waichman K. Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers[C]//Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems. International Society for Optics and Photonics, 2013, 8898: 88980W.
[33] Barmashenko B D, Rosenwaks S. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas [J]. Optics Letters, 2012, 37(17): 3615-3617. doi:  10.1364/OL.37.003615
[34] Barmashenko B D, Rosenwaks S, Waichman K. Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling[C]//Proceedings of Spie the International Society for Optical Engineering, 2014, 8962: 89620C.
[35] Waichman K, Barmashenko B D, Rosenwaks S. Beam propagation in an inhomogeneous medium of a static gas cesium diode pumped alkali laser: three-dimensional wave optics and fluid dynamics simulation [J]. Journal of the Optical Society of America B Optical Physics, 2018, 35(3): 558-567. doi:  10.1364/JOSAB.35.000558
[36] Barmashenko B D, Rosenwaks S. Feasibility of supersonic diode pumped alkali lasers: model calculations [J]. Applied Physics Letters, 2013, 102(14): 141108. doi:  10.1063/1.4800650
[37] Rosenwaks S, Barmashenko B D, Waichman K. Theoretical studies of the feasibility of supersonic DPALs[C]//Spie Security+ Defence, 2014, 9251: 92510W.
[38] Rosenwaks S, Barmashenko B D, Waichman K. What can we gain from supersonic operation of diode pumped alkali lasers: model calculations[C]//Spie Security+Defence. International Society for Optics and Photonics, 2013, 9251: 92510W.
[39] Rosenwaks S, Barmashenko B D, Waichman K. Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation[C]//Proceedings of Spie the International Society for Optical Engineering, 2014, 8962: 896209.
[40] Yacoby E, Waichman K, Sadot O, et al. Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices [J]. Optics Express, 2016, 24(5): 5469-5477. doi:  10.1364/OE.24.005469
[41] Barmashenko B D, Auslender I, Yacoby E, et al. Modeling of static and flowing-gas diode pumped alkali lasers[C]//Conference on High Energy/Average Power Lasers and Intense Beam Applications IX, 2016, 9729: 972904.
[42] Rosenwaks S, Yacoby E, Waichman K, et al. Supersonic diode pumped alkali lasers: Computational fluid dynamics modeling[C]//Technologies for Optical Countermeasures XⅡ and High-Power Lasers 2015: Technology and Systems. International Society for Optics and Photonics, 2015, 9650: 96500A.
[43] Yacoby E, Waichman K, Sadot O, et al. Modeling of supersonic diode pumped alkali lasers [J]. Journal of the Optical Society of America B-Optical Physics, 2015, 32(9): 1824-1833. doi:  10.1364/JOSAB.32.001824
[44] Waichman K, Barmashenko B D, Rosenwaks S. CFD DPAL modeling for various schemes of flow configurations[C]//SPIE Security + Defence, 2014. 9251: 92510U.
[45] Yacoby E, Waichman K, Sadot O, et al. Modeling of flowing-gas diode-pumped potassium laser with different pumping geometries: scaling up and controlling beam quality [J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 1-7.
[46] Yacoby E, Waichman K, Sadot O, et al. Scaling up and controlling beam quality of flowing-gas diode pumped potassium laser with different pumping geometries: 3D CFD modeling[C]//High Power Lasers: Technology and Systems, Platforms, Effects, 2017, 10436: 104360D.
[47] Perram G P, Gavrielides A, Schlie L A, et al. Analytic treatment of high power diode pumped lasers with unstable resonator in a flowing medium[C]//Laser Resonators, Microresonators, & Beam Control XX, 2018, 10518: 1051815.
[48] Gavrielides A, Schlie L A, Loper R D, et al. Analytic treatment of beam quality and power efficiency in a high-power transverse flow diode pumped alkali laser [J]. Journal of the Optical Society of America B, 2018, 35(9): 2202-2210. doi:  10.1364/JOSAB.35.002202
[49] Endo M, Nagaoka R, Nagaoka H, et al. Wave-optics simulation of diode-pumped cesium vapor laser coupled with a simplified gas-flow model [J]. Japanese Journal of Applied Physics, 2018, 57(9): 092701. doi:  10.7567/JJAP.57.092701
[50] Endo M, Nagaoka R, Nagaoka H, et al. Modeling of diode-pumped cesium vapor laser by combination of computational fluid dynamics and wave-optics [J]. Japanese Journal of Applied Physics, 2020, 59(2): 022002. doi:  10.7567/1347-4065/ab649f
[51] Krupke W F, Beach R J, Kanz V K, et al. New class of cw high-power diode-pumped alkali lasers (DPALs)[C]//Presented at: High-Power Laser Ablation, 2004.
[52] Zweiback J S, Betin A A, Krupke W F. Alkali-vapor laser with transverse pumping[P]. 12/122, 524, 2009.
[53] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system [J]. Optics Communications, 2015, 354: 256-258. doi:  10.1016/j.optcom.2015.06.010
[54] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Low pressure cesium and potassium diode pumped alkali lasers: pros and cons [J]. Optical Engineering, 2016, 55(2): 026105. doi:  10.1117/1.OE.55.2.026105
[55] Knize R J, Zhdanov B V, Rotondaro M D, et al. Experimental study of the Cs diode pumped alkali laser operation with different buffer gases [J]. Optical Engineering, 2016, 55(3): 036109.1-036109.5.
[56] Knize R J, Zhdanov B V, Rotondaro M T, et al. Operation of static and flowing Cs DPAL with different buffer gas mixtures[C]//Spie Lase, 2016, 9729: 972903..
[57] Pitz G A, Stalnaker D M, Guild E M, et al. Advancements in flowing diode pumped alkali lasers[C]//High Energy/average Power Lasers & Intense Beam Applications IX, 2016, 9729.
[58] Yamamoto T, Yamamoto F, Endo M, et al. Experimental investigation of gas flow type DPAL[C]//High Energy/Average Power Lasers and Intense Beam Applications IX, 2017, 10254: 102540S.
[59] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Examination of potassium diode pumped alkali laser using He, Ar, CH4 and C2H6 as buffer gas [J]. Optics Express, 2017, 25(24): 30793-30798. doi:  10.1364/OE.25.030793
[60] Yacoby E, Auslender I, Barmashenko B D, et al.Continuous wave diode pumped flowing-gas Cesium Laser[C]. 22nd International Symposium on High Power Laser Systems and Applications (HPLS and A), 2018, 11042: 110420D.
[61] Yang Z, Wang H, Lu Q, et al. Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser [J]. Journal of Physics B Atomic Molecular & Optical Physics, 2011, 44(8): 085401.
[62] Yang Z, Wang H, Hua W, et al. Diode-pumped rubidium vapor laser [J]. High Power Laser and Particle Beams, 2011, 23(9): 2273-2274. doi:  10.3788/HPLPB20112309.2273
[63] Yang Z, Wang H, Lu Q, et al. Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium [J]. Journal of the Optical Society of America B, 2011, 28(6): 1353-1364. doi:  10.1364/JOSAB.28.001353
[64] Yang Z, Wang H, Lu Q, et al. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission [J]. Optics Express, 2011, 19(23): 23118-23131. doi:  10.1364/OE.19.023118
[65] Han J, You W, An G, et al. Investigation of physical features of both static and flowing-gas diode-pumped rubidium vapor lasers[C]//Proceedings of Spie the International Society for Optical Engineering, 2014, 9266: 92660P.
[66] Han J, Wang Y, Cai H, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I [J]. Optics Express, 2014, 22(11): 13988-14003. doi:  10.1364/OE.22.013988
[67] Han J, Wang Y, Cai H, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part Ⅱ) [J]. Optics Express, 2015, 23(7): 9508-9515. doi:  10.1364/OE.23.009508
[68] Qi Z, Pan B, Li C, et al. Analysis of temperature distributions in diode-pumped alkali vapor lasers [J]. Optics Communications, 2010, 283(11): 2406-2410. doi:  10.1016/j.optcom.2010.02.014
[69] Shen B, Pan B, Jiao J, et al. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers [J]. Optics Express, 2015, 23(15): 19500-19511. doi:  10.1364/OE.23.019500
[70] Shen B, Xu X, Xia C, et al. Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers [J]. Optics Communications, 2016, 368: 43-48. doi:  10.1016/j.optcom.2016.01.084
[71] Shen B, Xu X, Xia C, et al. Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers [J]. Optics Communications, 2016, 380: 28-34. doi:  10.1016/j.optcom.2016.05.086
[72] Xu X, Shen B, Huang J, et al. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow [J]. Journal of Applied Physics, 2017, 122(2): 2151-2163.
[73] Xu X, Shen B, Xia C, et al. Modeling of kinetic and thermodynamic processes in a flowing exciplex pumped alkali vapor laser [J]. IEEE Journal of Quantum Electronics, 2017, 53(2): 1-7. doi:  10.1109/JQE.2017.2683781
[74] Xia C, Shen B, Xu X, et al. Modeling of a diode four-side pumped cesium vapor laser amplifier with flowing medium [J]. Applied Physics B, 2017, 123(3): 75. doi:  10.1007/s00340-017-6657-3
[75] Xia C, Xu X, Huang J, et al. Influences of operating parameters on deleterious processes of side-pumped cesium vapor laser amplifiers with flowing medium [J]. Journal of Applied Physics, 2018, 124(5): 053102. doi:  10.1063/1.5035182