[1] 李春来, 刘成玉, 金健, 等. 红外高光谱遥感成像的技术发展与气体探测应用[J], 红外与激光工程, 2022, 51(7): 33-45. doi:  10.3788/IRLA20210866

Li Chunlai, Liu Chengyu, Jin Jian, et al. Development of infrared hyperspectral remote sensing imaging and application of gas detection [J]. Infrared and Laser Engineering, 2022, 51(7): 20210866. (in Chinese) doi:  10.3788/IRLA20210866
[2] 崔廷伟, 马毅, 张杰, 航空高光谱遥感的发展与应用[J], 遥感技术与应用, 2003, 18(2): 118-122.

Cui Tingwei, Ma Yi, Zhang Jie. The development and applications of the airborne hyperspectral remote sensing [J]. Remote Sensing Technology and Application, 2003, 18(2): 118-122. (in Chinese)
[3] 王建宇, 李春来. 高光谱遥感成像技术的发展与展望[J], 空间科学学报, 2021, 41(1): 22-33.  

Wang Jianyu, Li Chunlai. Development and prospect of hyperspectral imager and its application [J]. Chinese Journal of Space Science, 2021, 41(1): 22-33. (in Chinese)
[4] 王君光, 关松. 高光谱成像卫星发展研究[J], 光电技术应用, 2020, 35(3): 1-7. doi:  10.3969/j.issn.1673-1255.2020.03.001

Wang Junguang, Guan Song. Research on development of hyper-spectral imaging satellite [J]. Electro-Optic Technology Application, 2020, 35(3): 1-7. (in Chinese) doi:  10.3969/j.issn.1673-1255.2020.03.001
[5] 刘银年. 高光谱成像遥感载荷技术的现状与发展[J], 遥感学报, 2021, 25(1): 439-459.

Liu Yinnian. Development of hyperspectral imaging remote sensing technology [J]. National Remote Sensing Bulletin, 2021, 25(1): 439-459. (in Chinese)
[6] 付严宇, 杨桄, 关世豪. 航空航天高光谱成像仪研究现状及发展趋势[J], 红外, 2020, 41(8): 1-8.

Fu Yanyu, Yang Guang, Guan Shihao. Research status and development trend of hyperspectral imagers onboard airborne and spaceborne platforms [J]. Infrared, 2020, 41(8): 1-8. (in Chinese)
[7] 刘银年, “高分五号”卫星可见短波红外高光谱相机的研制[J], 航天返回与遥感, 2018, 39(3): 25-28.

Liu Yinnian. Visible-shortwave infrared hyperspectral imager of GF-5 satellite [J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 25-28. (in Chinese)
[8] 董新丰, 甘甫平, 李娜, 等. 高分五号高光谱影像矿物精细识别[J], 遥感学报, 2020, 24(4): 454-464.

Dong Xinfeng, Gan Fuping, Li Na, et al. Fine mineral identification of GF-5 hyperspectral image [J]. Journal of Remote Sensing, 2020, 24(4): 454-464. (in Chinese)
[9] 马旭, 李云雪, 黄润宇, 等. 短波红外探测器的发展与应用[J], 红外与激光工程, 2022, 51(01): 135-146. doi:  10.3788/IRLA20210897

Ma Xu, Li Yunxue, Huang Runyu, et al. Development and application of short wavelength infrared detectors [J]. Infrared and Laser Engineering, 2022, 51(1): 20210897. (in Chinese) doi:  10.3788/IRLA20210897
[10] Leroy C, Fieque B, Jamin N, et al. SWIR space detectors and future developments at SOFRFADIR[C]//SPIE, 2013, 8889: 88891A.
[11] Bouakka-Manesse A, Jamin N, Delannoy A, et al. Space activity and programs at Sofradir[C]//SPIE, 2016, 10000: 100000N.
[12] 蔡毅, 碲镉汞探测器的回顾与展望[J], 红外与激光工程, 2022, 51(1): 20210988. doi:  10.3788/IRLA20210988

Cai Yi. Review and prospect of HgCdTe detectors [J]. Infrared and Laser Engineering, 2022, 51(1): 20210988. (in Chinese) doi:  10.3788/IRLA20210988
[13] 丁瑞军, 杨建荣, 何力, 等. 碲镉汞红外焦平面器件技术进展[J], 红外与激光工程, 2020, 49(1): 93-99. doi:  10.3788/IRLA202049.0103010

Ding Ruijun, Yang Jianrong, He Li, et al. Development of technologies for HgCdTe IRFPA [J]. Infrared and Laser Engineering, 2020, 49(1): 0103010. (in Chinese) doi:  10.3788/IRLA202049.0103010
[14] Hu Xiaoning, Huang Aibo, Liao Qingjun, et al. Large-format high SNR SWIR HgCdTe/Si FPA with multiple-choice gain for hyperspectral detection [C]//SPIE, 2017, 10213: 102130E.
[15] 王亮, 杨微. 碲镉汞红外探测器量子效率计算研究, 激光与红外, 2019, 49(7): 871-875.

Wang Liang, Yang Wei. Study on the quantum efficiency calculation of HgCdTe infrared detector [J]. Laser & Infrared, 2019, 49(7): 871-875. (in Chinese)
[16] 汤定元, 糜正瑜. 光电器件概论[M]. 上海: 上海科学技术文献出版社, 1989.
[17] 张小倩, 周翠. 红外探测器相对光谱响应测试[J], 红外, 2020, 41(6): 1-6.

Zhang Xiaoqian, Zhou Cui. Measurement of relative spectral of infrared detector [J]. Infrared, 2020, 41(6): 1-6. (in Chinese)
[18] 张永刚, 周立, 顾溢, 等. FTIR测量的量子型光电探测器响应光谱校正[J], 红外与毫米波学报, 2015, 34(6): 737-743.

Zhang Yonggang, Zhou Li, Gu Yi, et al. Correction of response spectra of quantum type photodetectors measured by FTIR [J]. Journal of Infrared and Millimeter Waves, 2015, 34(6): 737-743. (in Chinese)
[19] 陈郁, 贺香荣, 邵秀梅, 等. 基于Labview的短波红外焦平面相对响应光谱测试系统[J], 光学与光电技术, 2013, 11(6): 25-28. doi:  10.3969/j.issn.1672-3392.2013.06.006

Chen Yu, He Xiangrong, Shao Xiumei, et al. Measurement system of relative spectral response for SWIR FPA based on LabVIEW [J]. Optics & Optoelectronic Technology, 2013, 11(6): 25-28. (in Chinese) doi:  10.3969/j.issn.1672-3392.2013.06.006
[20] 中华人民共和国工业和信息化部. GB/T 17444—2013, 红外焦平面阵列参数测试方法[S]. 北京: 中国标准出版社, 2013.