[1] 陈良惠, 杨国文, 刘育衔. 半导体激光器研 究进展[J]. 中国激光, 2020, 47(05): 13-31.

Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers [J]. Chinese Journal of Lasers, 2020, 47(5): 0500001. (in Chinese)
[2] 杨成奥, 张一, 尚金铭等. 2~4 μm中红外锑化物半导体激光器研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201075. doi:  10.3788/IRLA20201075

Yang C A, Zhang Y, Shang J M, et.al. Research progress of 2-4 μm mid-infrared antimonide semiconductor lasers (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201075. (in Chinese) doi:  10.3788/IRLA20201075
[3] 孙胜明, 范杰, 徐莉等. 锥形半导体激光器研究进展[J]. 中国光学, 2019, 12(1): 48-58. doi:  10.3788/co.20191201.0048

Sun S M, Fan J, Xu L, et al. Progress of tapered semiconductor diode lasers [J]. Chinese Optics, 2019, 12(1): 48-58. (in Chinese) doi:  10.3788/co.20191201.0048
[4] 韩顺利, 仵欣, 林强. 半导体激光器稳频技术[J]. 红外与激光工程, 2013, 42(5): 1189-1193. doi:  10.3969/j.issn.1007-2276.2013.05.015

Han Shunli, Wu Xin, Lin Qiang. Frequency stabilization technologies of semiconductor laser [J]. Infrared and Laser Engineering, 2013, 42(5): 1189-1193. (in Chinese) doi:  10.3969/j.issn.1007-2276.2013.05.015
[5] 花金平, 江毅. 可调谐外腔半导体激光器研究进展[J]. 半导体光电, 2021, 42(01): 11-19+56.

Hua J P, Jiang Y. Recent progresses of tunable external cavity diode laser [J]. Semiconductor Optoelectronics, 2021, 42(1): 11-19, 56. (in Chinese)
[6] 王杰, 高静, 杨保东等. 铷原子饱和吸收光谱与偏振光谱对 780 nm半导体激光器稳频的比较[J]. 中国光学, 2011, 4(3): 305-312. doi:  10.3969/j.issn.2095-1531.2011.03.014

Wang J, Gao J, Yang B D, et al. Comparison of frequency locking of 780 nm diode laser via rubidium saturated absorption and polarization spectroscopies [J]. Chinese Optics, 2011, 4(3): 305-312. (in Chinese) doi:  10.3969/j.issn.2095-1531.2011.03.014
[7] 丁振名. 基于飞秒光梳的激光稳频方法研究[D]. 中国计量大学, 2019.

Ding Z M. Research on laser frequency stabilization method based on femtosecond optical comb[D]. Hangzhou: China Jiliang University, 2019. (in Chinese)
[8] 吉经纬, 程鹤楠, 张镇, 刘亢亢, 项静峰, 任伟, 李琳, 吕德胜. 可搬运铷喷泉原子钟全自动激光稳频系统[J]. 光学学报, 2020, 40(22): 163-169.

Ji J W, Cheng H N, Zhang Z, et al. Automatic laser frequency stabilization system for transportable 87Rb fountain clock [J]. Acta Optica Sinica, 2020, 40(22): 2214002. (in Chinese)
[9] 陆丹, 杨秋露, 王皓, 贺一鸣, 齐合飞, 王欢, 赵玲娟, 王圩. 通信波段半导体分布反馈激光器[J]. 中国激光, 2020, 47(07): 11-29.

Lu D, Yang Q L, Wang H, et al. Review of semiconductor distributed feedback lasers in the optical communication band [J]. Chinese Journal of Lasers, 2020, 47(7): 0701001. (in Chinese)
[10] Jun Tsuboi, Takeshi Kuboki, Kazutoshi Kato. Wide-capture-range, high-precision wavelength stabilization within ±50 MHz for flexible-grid wavelength division multiplexing by photomixing technique [J]. Japanese Journal of Applied Physics, 2016, 55(8S3): 08RB10. doi:  10.7567/JJAP.55.08RB10
[11] Guo J J, Liu N H, Deng Y et al. Frequency stabilization of a semiconductor laser based on gas absorption cell[C]//2016 25th Wireless and Optical Communication Conference (WOCC), 2016: 1-3.
[12] 梅教旭, 汪磊, 谈图, 刘锟, 王贵师, 高晓明. 基于二次谐波特性的DFB激光器稳频新方法研究[J]. 光谱学与光谱分析, 2019, 39(10): 2989-2992.

Mei J X, Wang L, Tan T, et al. Research on new method of frequency stabilization of DFB laser based on second harmonic characteristics [J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 2989-2992. (in Chinese)
[13] 岱 钦, 宋文武, 王希军. 高频半导体激光器的驱动设计及稳定性分析[J]. 光学精密工程, 2006, 14(5): 745-748. doi:  10.3321/j.issn:1004-924X.2006.05.004

Dai Q, Song W W, Wang X J. Design and stability analysis of high frequency LD's driving circuit [J]. Optics and Precision Engineering, 2006, 14(5): 745-748. (in Chinese) doi:  10.3321/j.issn:1004-924X.2006.05.004
[14] 丛梦龙, 李 黎, 崔艳松, 等. 控制半导体激光器的高稳定度数字化驱动电源的设计[J]. 光学精密工程, 2010, 18(7): 1629-1636.

Cong M L, Li L, Cui Y S, et al. Design of high stability digital control driving system for semiconductor laser [J]. Optics and Precision Engineering, 2010, 18(7): 1629-1636. (in Chinese)
[15] Gilbert S, Swann W, Wang C. Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration—SRM 2519a[S/OL]. (2005-08-01)[2021-06-11]. https://doi.org/10.6028/NIST.SP.260-137.