[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives (Invited) [J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi:  10.1364/JOSAB.27.000B63
[2] Johan N, Payne D N. High-power fiber lasers [J]. Science, 2011, 332(6032): 921-922. doi:  10.1126/science.1194863
[3] Shi W, Schulzgen A, Amezcua R. Fiber lasers and their applications: introduction [J]. Journal of the Optical Society of America B, 2017, 34(3): FLA1. doi:  10.1364/JOSAB.34.00FLA1
[4] 肖起榕, 田佳丁, 李丹, 等. 级联泵浦高功率掺镱光纤激光器: 进展与展望 [J]. 中国激光, 2021, 48(15): 66-86.

Xiao Qirong, Tian Jiading, Li Dan, et al. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities [J]. Chinese Journal of Lasers, 2021, 48(15): 1501004. (in Chinese)
[5] Zhou Pu. Review on the discipline of high power fiber laser in China[J/OL]. Infrared and Laser Engineering, (2023-03-24) [2023-06-20]. http://kns.cnki.net/kcms/detail/12.1261.TN.20230323.1736.006.html.
[6] O'Connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10 kW [C]//Conference on Lasers and Electro-Optics, 2009: CThA3.
[7] Shiner B. The impact of fiber laser technology on the world wide material processing market [C]//Conference on Lasers and Electro-Optics: Applications and Technology, 2013: AF2J.1
[8] 林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48(9): 0916003.
[9] 肖虎, 潘志勇, 陈子伦, 等. 基于自研光纤和器件实现20 kW高光束质量激光稳定输出[J]. 中国激光, 2022, 49(16): 1616002.
[10] 衣永青, 刘君, 沈一泽, 等. 国产两万瓦级同带泵浦掺镱双包层光纤 [J]. 中国激光, 2022, 49(07): 97-102.

Yi Yongqing, Liu Jun, Shen Yize, et al. Homemade 20 kW Yb-doped double-cladding fiber for tandem pumping [J]. Chinese Journal of Lasers, 2022, 49(7): 0706002. (in Chinese)
[11] 奚小明, 杨保来, 张汉伟, 等. LD直接泵浦全光纤激光器输出功率突破20 kW [J]. 强激光与粒子束, 2023, 35(2): 021001.

Xi Xiaoming, Yang Baolai, Zhang Hanwei, et al. 20 kW monolithic fiber amplifier directly pumped by LDs [J]. High Power Laser and Particle Beams, 2023, 35(2): 021001. (in Chinese)
[12] Huber G, Kränkel C, Petermann K. Solid-state lasers: status and future (Invited) [J]. Journal of the Optical Society of America B, 2010, 27(11): B93-B105. doi:  10.1364/JOSAB.27.000B93
[13] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers [J]. Nature Photonics, 2013, 7(11): 861-867. doi:  10.1038/nphoton.2013.273
[14] Zervas M N, Codemard C A. High power fiber lasers: A review [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi:  10.1109/JSTQE.2014.2321279
[15] 周寿桓. 固体激光器中的热管理 [J]. 量子电子学报, 2005, 22(4): 497–509.

Zhou Shouhuan. The heat managements of the solid-state lasers [J]. Chinese Journal of Quantum Electronics, 2005, 22(4): 497-509. (in Chinese)
[16] Bowman S R. Low quantum defect laser performance [J]. Optical Engineering, 2016, 56(1): 011104. doi:  10.1117/1.OE.56.1.011104
[17] Karimi M. Contribution of different factors in heat production in Yb3+-doped fiber laser: a review [J]. Optical Engineering, 2022, 61(11): 110902.
[18] Yu N J, Ballato J, Digonnet M J F, et al. Optically managing thermal energy in high-power Yb-doped fiber lasers and amplifiers: A brief review [J]. Current Optics and Photonics, 2022, 6(6): 521-549.
[19] Zellmer H, Willamowski U, Tünnermann A, et al. High-power cw neodymium-doped fiber laser operating at 9.2 W with high beam quality [J]. Optics Letters, 1995, 20(6): 578-580. doi:  10.1364/OL.20.000578
[20] Dominic V, Maccormack S, Waarts R, et al. 110 W fibre laser [J]. Electronics Letters, 1999, 35(14): 1158-1160. doi:  10.1049/el:19990792
[21] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power [J]. Optics Express, 2004, 12(25): 6088-6092. doi:  10.1364/OPEX.12.006088
[22] Eric S. New developments in IPG fiber laser technology [C]//Proceedings of the 5th International Workshop on Fiber Lasers, 2009: 4-6.
[23] Zhou P, Xiao H, Leng J, et al. High-power fiber lasers based on tandem pumping [J]. Journal of the Optical Society of America B, 2017, 34(3): A29. doi:  10.1364/JOSAB.34.000A29
[24] 肖虎. 掺镱光纤激光级联泵浦技术研究[D]. 长沙: 国防科学技术大学, 2012.

Xiao Hu. Study on tandem pumping technology of ytterbium-doped fiber lasers [D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
[25] Jebali M A, Maran J-N, Larochelle S. 264 W output power at 1 585 nm in Er–Yb codoped fiber laser using in-band pumping [J]. Optics Letters, 2014, 39(13): 3974-3977. doi:  10.1364/OL.39.003974
[26] Creeden D, Johnson B R, Setzler S D, et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency [J]. Optics Letters, 2014, 39(3): 470-473. doi:  10.1364/OL.39.000470
[27] Jin X, Lou Z, Chen Y, et al. High-power dual-wavelength Ho-doped fiber laser at > 2 μm tandem pumped by a 1.15 μm fiber laser [J]. Scientific Reports, 2017, 7: 42402. doi:  10.1038/srep42402
[28] Wirth C, Schmidt O, Kliner A, et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW [J]. Optics Letters, 2011, 36(16): 3061-3063. doi:  10.1364/OL.36.003061
[29] Yao T, Ji J, Sahu J, K, et al. Tandem-pumped ytterbium-doped aluminosilicate fiber amplifier with low quantum defect [C]//Conference on Lasers and Electro-Optics. 2012: CM4N.7.
[30] Chang Y M, Yao T, Jeong H, et al. 3 % thermal load measured in tandem-pumped ytterbium-doped fiber amplifier [C]//Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications. 2014: 1-2.
[31] Ma P, Xiao H, Meng D, et al. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression [J]. High Power Laser Science and Engineering, 2018, 6(4): e57.
[32] Matsubara S, Uno K, Nakajima Y, et al. Extremely low quantum defect oscillation of Ytterbium fiber laser by laser diode pumping at room temperature [C]//Advanced Solid-State Photonics. 2007: TuB4.
[33] Yao T, Ji J, Nilsson J. Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers [J]. Journal of Lightwave Technology, 2014, 32(3): 429-434. doi:  10.1109/JLT.2013.2290284
[34] Yu N, Cavillon M, Kucera C, et al. Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber [J]. Optics Letters, 2018, 43(13): 3096-3099. doi:  10.1364/OL.43.003096
[35] Yu N, Desai K V, Mironov A E, et al. Reduced quantum defect in a Yb-doped fiber laser by balanced dual-wavelength excitation [J]. Applied Physics Letters, 2021, 119(14): 141105. doi:  10.1063/5.0063276
[36] Feng Y. High power Raman fiber lasers: recent progress [J]. Frontiers in Optics, 2015: FTh2F.1.
[37] Arun S, Choudhury V, Prakash R, et al. High power, tunable, continuous-wave fiber lasers in the L-band using cascaded Raman amplifiers [J]. IEEE Photonics Technology Letters, 2018, 30(15): 1412-1415. doi:  10.1109/LPT.2018.2850850
[38] Balaswamy V, Ramachandran S, Supradeepa V R. High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning [J]. Optics Express, 2019, 27(7): 9725-9732. doi:  10.1364/OE.27.009725
[39] Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star [J]. Laser & Photonics Reviews, 2014, 8(6): 889-895.
[40] Yin T, Qi Z, Chen F, et al. High peak-power and narrow-linewidth all-fiber raman nanosecond laser in 1.65 µm waveband [J]. Optics Express, 2020, 28(5): 7175-7181. doi:  10.1364/OE.388216
[41] Stolen R H, Ippen E P, Tynes A R. Raman oscillation in glass optical waveguide [J]. Applied Physics Letters, 1972, 20(2): 62-64. doi:  10.1063/1.1654046
[42] Codemard C A, Dupriez P, Jeong Y, et al. High-power continuous-wave cladding-pumped Raman fiber laser [J]. Optics Letters, 2006, 31(15): 2290-2292. doi:  10.1364/OL.31.002290
[43] Emori Y, Tanaka K, Headley C, et al. High-power cascaded Raman fiber laser with 41 W output power at 1 480 nm band [C]//Conference on Lasers and Electro-Optics (CLEO), 2007: 1–2.
[44] Cumberland B A, Popov S V, Taylor J R, et al. 2.1 µm continuous-wave Raman laser in GeO2 fiber [J]. Optics Letters, 2007, 32(13): 1848-1850. doi:  10.1364/OL.32.001848
[45] Feng Y, Taylor L R, Calia D B, et al. 39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm [C]//Frontiers in Optics, Optical Society of America, 2009: PDPA4.
[46] Kablukov S I, Babin S A, Churkin D V, et al. Frequency doubling of a Raman fiber laser [J]. Laser Physics, 2010, 20(2): 365-371. doi:  10.1134/S1054660X10030096
[47] 周朴, 姚天甫, 范晨晨, 等. 拉曼光纤激光: 50年的历程、现状与趋势(特邀) [J]. 红外与激光工程, 2022, 51(01): 20220015.

Zhou Pu, Yao Tianfu, Fan Chenchen, et al. 50 th anniversary of raman fiber laser: History, progress and prospect (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20220015. (in Chinese)
[48] Feng Y, Taylor L R, Calia D B. 150 W highly-efficient Raman fiber laser [J]. Optics Express, 2009, 17(26): 23678-23683. doi:  10.1364/OE.17.023678
[49] Zhang H, Ye J, Zhou P, et al. Tapered-fiber-enabled high-power, high-spectral-purity random fiber lasing [J]. Optics Letters, 2018, 43(17): 4152-4155. doi:  10.1364/OL.43.004152
[50] Zhang Y, Li S C, Ye J, et al. Low quantum defect random Raman fiber laser [J]. Optics Letters, 2022, 47(5): 1109-1112. doi:  10.1364/OL.448517
[51] Baek S H, Roh W B. Single-mode Raman fiber laser based on a multimode fiber [J]. Optics Letters, 2004, 29(2): 153-155. doi:  10.1364/OL.29.000153
[52] Flusche B M, Alley T G, Russell T H, et al. Multi-port beam combination and cleanup in large multimode fiber using stimulated Raman scattering [J]. Optics Express, 2006, 14(24): 11748-11755. doi:  10.1364/OE.14.011748
[53] Glick Y, Fromzel V, Zhang J, et al. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement [J]. Applied Optics, 2017, 56(3): B97-B102. doi:  10.1364/AO.56.000B97
[54] Wang W, Huang L, Leng J, et al. Beam cleanup of the stimulated Raman scattering in grade-index multi-mode fiber [J]. Chinese Optics Letters, 2014, 12(S2): S21401. doi:  10.3788/col201412.s21401
[55] Babin S A. High-brightness all-fiber Raman lasers directly pumped by multimode laser diodes [J]. High Power Laser Science and Engineering, 2019, 7(1): 01000e15.
[56] Chen Y, Yao T, Xiao H, et al. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement [J]. Journal of Lightwave Technology, 2021, 39(6): 1785-1790. doi:  10.1109/JLT.2020.3039677
[57] Yao T, Harish A V, Sahu J K, et al. High-power continuous-wave directly-diode-pumped fiber Raman lasers [J]. Applied Sciences, 2015, 5(4): 1323-1336. doi:  10.3390/app5041323
[58] Glick Y, Shamir Y, Aviel M, et al. 1.2  kW clad pumped Raman all-passive-fiber laser with brightness enhancement [J]. Optics Letters, 2018, 43(19): 4755-4758. doi:  10.1364/OL.43.004755
[59] Chen Y, Yao T, Xiao H, et al. High-power cladding pumped Raman fiber amplifier with a record beam quality [J]. Optics Letters, 2020, 45(8): 2367-2370. doi:  10.1364/OL.388297
[60] Bélanger E, Bernier M, Faucher D, et al. High-power and widely tunable all-fiber Raman laser [J]. Journal of Lightwave Technology, 2008, 26(12): 1696-1701. doi:  10.1109/JLT.2008.922337
[61] Ma X Y, Zhang Y, Ye J, et al. Pure silica fiber Raman gain enabled high-power low-quantum defect fiber laser [J]. Optics and Laser Technology, 2023, 158: 108833. doi:  10.1016/j.optlastec.2022.108833
[62] Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass [J]. Nature Materials, 2008, 7(11): 870-877. doi:  10.1038/nmat2293
[63] Dong J, Zhang L, Zhou J, et al. More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber [J]. Optics Letters, 2019, 44(7): 1801-1804. doi:  10.1364/OL.44.001801
[64] Berman R. Thermal conductivity of glasses at low temperatures [J]. Physical Review, 1949, 76(2): 315. doi:  10.1103/PhysRev.76.315
[65] Krishnan R. S. The scattering of light in fused quartz and its Raman spectrum [C]//Proceedings of the Indian Academy of Sciences-Section A, Springer India, 1953: 377-384.
[66] Ren S, Zong H X, Tao X F, et al. Boson-peak-like anomaly caused by transverse phonon softening in strain glass [J]. Nature Communications, 2021, 12(1): 5755. doi:  10.1038/s41467-021-26029-w
[67] Yang J, Wang Y J, Ma E, et al. Structural parameter of orientational order to predict the boson vibrational anomaly in glasses [J]. Physical Review Letters, 2019, 122(1): 015501. doi:  10.1103/PhysRevLett.122.015501
[68] Wang L J, Ninarello A, Guan P F, et al. Low-frequency vibrational modes of stable glasses [J]. Nature Communications, 2019, 10: 26. doi:  10.1038/s41467-018-07978-1
[69] Baggioli M, Zaccone A. Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials [J]. Physical Review Letters, 2019, 122(14): 145501. doi:  10.1103/PhysRevLett.122.145501
[70] Malinovsky V K, Sokolov A P. The nature of boson peak in Raman scattering in glasses [J]. Solid State Communications, 1986, 57(9): 757-761. doi:  10.1016/0038-1098(86)90854-9
[71] Fayos R, Bermejo F J, Dawidowski J, et al. Direct experimental evidence of the relationship between intermediate-range order in topologically disordered matter and discernible features in the static structure factor [J]. Physical Review Letters, 1996, 77(18): 3823-3826. doi:  10.1103/PhysRevLett.77.3823
[72] Dove M T, Harris M J, Hannon A C, et al. Floppy modes in crystalline and amorphous silicates [J]. Physical Review Letters, 1997, 78(6): 1070-1073. doi:  10.1103/PhysRevLett.78.1070
[73] Schroeder J, Wu W M, Apkarian J L, et al. Raman scattering and boson peaks in glasses: temperature and pressure effects [J]. Journal of Non-Crystalline Solids, 2004, 349: 88-97. doi:  10.1016/j.jnoncrysol.2004.08.265
[74] Salceda-delgado G, Martinez-rios A, Ilan B, et al. Raman response function and Raman fraction of phosphosilicate fibers [J]. Optical and Quantum Electronics, 2012, 44(14): 657-671. doi:  10.1007/s11082-012-9584-x
[75] Hu Y C, Tanaka H. Origin of the boson peak in amorphous solids [J]. Nature Physics, 2022, 18(6): 669-677. doi:  10.1038/s41567-022-01628-6
[76] Gonzalez-jimenez M, Barnard T, Russell B A, et al. Understanding the emergence of the boson peak in molecular glasses [J]. Nature Communications, 2023, 14(1): 215-215. doi:  10.1038/s41467-023-35878-6
[77] Zhang Y, Xu J, Ye J, et al. Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber [J]. Photonics Research, 2020, 8(7): 1155-1160. doi:  10.1364/PRJ.390950
[78] Ma X Y, Ye J, Zhang Y, et al. Hundred-watt-level phosphosilicate Raman fiber laser with less than 1% quantum defect [J]. Optics Letters, 2021, 46(11): 2662-2665. doi:  10.1364/OL.426752
[79] Ma X Y, Xu J M, Ye J, et al. Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber [J]. High Power Laser Science and Engineering, 2022, 10: e8. doi:  10.1017/hpl.2021.60
[80] Zhang Y, Xu J M, Li S C, et al. Phosphosilicate fiber-based low quantum defect Raman fiber laser with ultrahigh spectral purity [J]. Nanomaterials, 2022, 12(9): 1490. doi:  10.3390/nano12091490