[1] Simm J D, Brampton A H, Beech N W, et al. Beach Manage-ment Manual[M]. London: CIRIA London, 1996.
[2] Zhang Guoqing. China lake dataset (1960s-2020)[EB/DB]. Bei-jing: National Tibetan Plateau Data Center, 2019. (in Chinese)
[3] 智研咨询. 2019年中国共有98112座水库, 湖南为水库数量最多的地区[EB/OL]. (2020-10-21)[2021-10-09]. https://www.sohu.com/a/426375019_775892.
[4] Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24[Z]. Boulder, Co.: National Geophysical Data Center, NOAA, 2009.
[5] 誓言心语. 中国到底有多少个海岛?全球海岛最多国家, 我国排第几?[EB/OL]. (2019-05-16)[2021-10-09]. https://www.sohu.com/a/314239427_120152440.
[6] Nicholls R J, Cazenave A. Sea-level rise and its impact on coastal zones [J]. Science, 2010, 328(5985): 1517-1520. doi:  10.1126/science.1185782
[7] Narayan S, Beck M W, Reguero B G, et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences [J]. PloS One, 2016, 11(5): e0154735. doi:  10.1371/journal.pone.0154735
[8] Janowski L, Trzcinska K, Tegowski J, et al. Nearshore benthic habitat mapping based on multi-frequency, multibeam echo-sounder data using a combined object-based approach: A case study from the Rowy site in the southern Baltic sea [J]. Remote Sensing, 2018, 10(12): 1983. doi:  10.3390/rs10121983
[9] Casal G, Harris P, Monteys X, et al. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models [J]. GIScience & Remote Sensing, 2020, 57(3): 271-286.
[10] Kim H, Lee S B, Min K S. Shoreline change analysis using airborne LiDAR bathymetry for coastal monitoring [J]. Journal of Coastal Research, 2017, 79(10079): 269-273. doi:  https://doi.org/10.2112/SI79-055.1
[11] Geyman E C, Maloof A C. A simple method for extracting water depth from multispectral satellite imagery in regions of variable bottom type [J]. Earth and Space Science, 2019, 6(3): 527-537. doi:  10.1029/2018EA000539
[12] Garcia R A, Mckinna L I, Hedley J D, et al. Improving the optimization solution for a semi-analytical shallow water inversion model in the presence of spectrally correlated noise [J]. Limnology and Oceanography: Methods, 2014, 12(10): 651-669. doi:  10.4319/lom.2014.12.651
[13] Kutser T, Vahtmae E, Martin G. Assessing suitability of multi-spectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations [J]. Estuarine, Coastal and Shelf Science, 2006, 67(3): 521-529. doi:  10.1016/j.ecss.2005.12.004
[14] Ma Y, Xu N, Liu Z, et al. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets [J]. Remote Sensing of Environment, 2020, 250: 112047. doi:  10.1016/j.rse.2020.112047
[15] Kutser T, Hedley J, Giardino C, et al. Remote sensing of shallow waters–A 50 year retrospective and future directions [J]. Remote Sensing of Environment, 2020, 240: 111619. doi:  10.1016/j.rse.2019.111619
[16] Renga A, Rufino G, D’errico M, et al. SAR bathymetry in the Tyrrhenian sea by COSMO-SkyMed data: A novel approach [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2834-2847. doi:  10.1109/JSTARS.2014.2327150
[17] Mishra M K, Ganguly D, Chauhan P. Estimation of coastal bathymetry using RISAT-1 C-band microwave SAR data [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11(3): 671-675.
[18] Magruder L A, Brunt K M. Performance analysis of airborne photon-counting lidar data in preparation for the ICESat-2 mission [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2911-2918. doi:  10.1109/TGRS.2017.2786659
[19] Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance [J]. Remote Sen-sing, 2019, 11(14): 1634. doi:  10.3390/rs11141634
[20] Neumann T A, Brenner A, Hancock D, et al. ATLAS/ICESat-2 L2 A global geolocated photon data, version 3[Z]. Boulder, Co.: NASA National Snow and Ice Data Center Distributed Active Archive Center, 2020.
[21] Magruder L, Neumann T, Kurtz N. ICESat-2 early mission synopsis and observatory performance [J]. Earth and Space Science, 2021, 8(5): e2020EA001555. doi:  10.1029/2020EA001555
[22] Magruder L, Brunt K, Neumann T, et al. Passive ground-based optical techniques for monitoring the on-orbit ICESat-2 altimeter geolocation and footprint diameter [J]. Earth and Space Science, 2021, 8(10): e2020EA001414. doi:  10.1029/2020EA001414
[23] Jasinski M F, Stoll J D, Cook W B, et al. Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL) [J]. Journal of Coastal Research, 2016, 76(10076): 44-55.
[24] Forfinski-sarkozi N A, Parrish C E. Analysis of MABEL bathymetry in Keweenaw Bay and implications for ICESat-2 ATLAS [J]. Remote Sensing, 2016, 8(9): 772. doi:  10.3390/rs8090772
[25] Xu N, Ma Y, Zhang W, et al. Monitoring annual changes of lake water levels and volumes over 1984–2018 using landsat imagery and ICESat-2 data [J]. Remote Sensing, 2020, 12(23): 4004. doi:  10.3390/rs12234004
[26] Liu C, Qi J, Li J, et al. Accurate refraction correction—assisted bathymetric inversion using ICESat-2 and multispectral data [J]. Remote Sensing, 2021, 13(21): 4355. doi:  10.3390/rs13214355
[27] Ma Y, Li S, Zhang W, et al. Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors [J]. Optics express, 2018, 26(12): 15924-15934. doi:  10.1364/OE.26.015924
[28] Zhang W, Xu N, Ma Y, et al. A maximum bathymetric depth model to simulate satellite photon-counting lidar performance [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174: 182-197. doi:  10.1016/j.isprsjprs.2021.02.013
[29] Popescu S C, Zhou T, Nelson R, et al. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data [J]. Remote Sensing of Environment, 2018, 208: 154-170. doi:  10.1016/j.rse.2018.02.019
[30] Chen Y, Le Y, Zhang D, et al. A photon-counting LiDAR bathymetric method based on adaptive variable ellipse filtering [J]. Remote Sensing of Environment, 2021, 256: 112326. doi:  10.1016/j.rse.2021.112326
[31] Magruder L A, Wharton III M E, Stout K D, et al. Noise filtering techniques for photon-counting ladar data[C]//Laser Radar Technology and Applications XVII. International Society for Optics and Photonics, 2012, 8379: 83790Q.
[32] Brunt K M, Neumann T A, Walsh K M, et al. Determination of local slope on the greenland ice sheet using a multibeam photon-counting lidar in preparation for the ICESat-2 mission [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11(5): 935-939.
[33] Chen B, Pang Y. A denoising approach for detection of canopy and ground from ICESat-2’s airborne simulator data in Mary-land, USA[C]//AOPC 2015: Advances in Laser Technology and Applications, 2015, 9671: 96711S.
[34] Zhang J, Kerekes J, Csatho B, et al. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data[C]//2014 IEEE Geoscience and Remote Sensing Symposium, IEEE, 2014: 177–180.
[35] Wang X, Pan Z, Glennie C. A novel noise filtering model for photon-counting laser altimeter data [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 947-951. doi:  10.1109/LGRS.2016.2555308
[36] Herzfeld U C, Trantow T M, Harding D, et al. Surface-height determination of crevassed glaciers—Mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1874-1896. doi:  10.1109/TGRS.2016.2617323
[37] Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 mission [J]. Remote Sensing of Environment, 2019, 221: 247-259. doi:  10.1016/j.rse.2018.11.005
[38] Forfinski-sarkozi N A, Parrish C E. Active-passive spaceborne data fusion for mapping nearshore bathymetry [J]. Photo-grammetric Engineering & Remote Sensing, 2019, 85(4): 281-295. doi:  10.14358/PERS.85.4.281
[39] Ma Y, Zhang W, Sun J, et al. Photon-counting lidar: An adaptive signal detection method for different land cover types in coastal areas [J]. Remote Sensing, 2019, 11(4): 471. doi:  10.3390/rs11040471
[40] Ma Y, Liu R, Li S, et al. Detecting the ocean surface from the raw data of the MABEL photon-counting lidar [J]. Optics Express, 2018, 26(19): 24752-24762. doi:  10.1364/OE.26.024752
[41] Xie C, Chen P, Pan D, et al. Improved filtering of ICESat-2 lidar data for nearshore bathymetry estimation using Sentinel-2 imagery [J]. Remote Sensing, 2021, 13(21): 4303. doi:  10.3390/rs13214303
[42] Hsu H J, Huang C Y, Jasinski M, et al. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: A case study in the South China Sea [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 1-19. doi:  10.1016/j.isprsjprs.2021.05.012
[43] Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom features [J]. Applied Optics, 1978, 17(3): 379-383. doi:  10.1364/AO.17.000379
[44] Stumpf R P, Holderied K, Sinclair M. Determination of water depth with high-resolution satellite imagery over variable bottom types [J]. Limnology and Oceanography, 2003, 48(1part2): 547-556. doi:  10.4319/lo.2003.48.1_part_2.0547
[45] Kerr J M, Purkis S. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data [J]. Remote Sensing of Environ-ment, 2018, 210: 307-324. doi:  10.1016/j.rse.2018.03.024
[46] Jin Jianwen, Li Guoyuan, Sun Wei, et al. Application status and prospect on water resources investigation and monitoring by satellite remote sensing [J]. Bulletin of Surveying and Mapping, 2020(5): 7-10. (in Chinese) doi:  CNKI:SUN:CHTB.0.2020-05-002
[47] Caballero I, Stumpf R P. Atmospheric correction for satellite-derived bathymetry in the Caribbean waters: from a single image to multi-temporal approaches using Sentinel-2 A/B [J]. Optics Express, 2020, 28(8): 11742-11766. doi:  10.1364/OE.390316
[48] Pan Z, Glennie C L, Fernandez-diaz J C, et al. Fusion of LiDAR orthowaveforms and hyperspectral imagery for shallow river bathymetry and turbidity estimation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4165-4177. doi:  10.1109/TGRS.2016.2538089
[49] Liu Yongming, Deng Ruru, Qin Yan, et al. Data processing methods and applications of airborne LiDAR bathymetry [J]. National Remote Sensing Bulletin, 2017, 21(6): 982-995. (in Chinese) doi:  10.11834/jrs.20176395
[50] Caballero I, Stumpf R P. Towards routine mapping of shallow bathymetry in environments with variable turbidity: Contribution of Sentinel-2 A/B satellites mission [J]. Remote Sensing, 2020, 12(3): 451. doi:  10.3390/rs12030451
[51] Fricker H A, Arnat P, Brunt K M, et al. ICESat-2 meltwater depth estimates: Application to surface melt on Amery Ice Shelf, East Antarctica [J]. Geophysical Research Letters, 2021, 48(8): e2020GL090550.
[52] Cao B, Fang Y, Gao L, et al. An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery [J]. International Journal of Remote Sensing, 2021, 42(8): 2783-2806. doi:  10.1080/01431161.2020.1862441
[53] Xu N, Ma X, Ma Y, et al. Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multitemporal stacking method [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6677-6685. doi:  10.1109/JSTARS.2021.3090792
[54] Albright A, Glennie C. Nearshore bathymetry from fusion of sentinel-2 and ICESat-2 observations [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(5): 900-904. doi:  10.1109/LGRS.2020.2987778
[55] Thomas N, Pertiwi A P, Traganos D, et al. Space borne cloud-native satellite-derived bathymetry (SDB) models using ICESat-2 and Sentinel-2 [J]. Geophysical Research Letters, 2021, 48(6): e2020GL092170. doi:  https://doi.org/10.1029/2020GL092170
[56] Babbel B J, Parrish C E, Magruder L A. ICESat-2 elevation retrievals in support of satellite-derived bathymetry for global science applications [J]. Geophysical Research Letters, 2021, 48(5): e2020GL090629. doi:  https://doi.org/10.1029/2020GL090629
[57] Chen Y, Zhu Z, Le Y, et al. Refraction correction and coordinate displacement compensation in nearshore bathymetry using ICESat-2 lidar data and remote-sensing images [J]. Optics Express, 2021, 29(2): 2411-2430. doi:  10.1364/OE.409941
[58] Xu N, Ma Y, Yang J, et al. Deriving tidal flat topography using ICESat-2 laser altimetry and Sentinel-2 imagery [J]. GeophysicalResearch Letters, 2022, 49(2): e2021GL096813. doi:  https://doi.org/10.1029/2021GL096813
[59] Fair Z, Flanner M, Brunt K M, et al. Using ICESat-2 and operation IceBridge altimetry for supraglacial lake depth retrievals [J]. The Cryosphere, 2020, 14(11): 4253-4263. doi:  10.5194/tc-14-4253-2020
[60] Datta R T, Wouters B. Supraglacial lake bathymetry auto-matically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery[EB/OL]. (2020-10-22)[2021-10-09]. https://www.essoar.org/doi/10.1002/essoar. 10504544.1: 1–26.
[61] Lu X, Hu Y, Yang Y, et al. Enabling value added scientific applications of ICESat-2 data with effective removal of afterpulses [J]. Earth and Space Science, 2021, 8(6): e2021-EA001729. doi:  10.1029/2021EA001729