[1] 杨柳, 蒋世磊, 孙国斌等. 等离激元增强金属-硅组合微结构近红外吸收 [J]. 光学学报, 2020, 40(21): 162-168.

Yang Liu, Jiang Shilei, Sun Guobin, et al. Plasmonic enhanced near-infrared absorption of metal-silicon composite microstructure [J]. Acta Optica Sinica, 2020, 40(21): 2124003. (in Chinese)
[2] Banerjee S, Das M K. A review of Al2O3 as surface passivation material with relevant process technologies on c-Si solar cell [J]. Optical and Quantum Electronics, 2021, 53(1): 1-25. doi:  10.1007/s11082-020-02634-9
[3] Sundarapura P, Zhang X M, Yogai R, et al. Nanostructure of porous Si and Anodic SiO2 surface passivation for improved efficiency porous Si solar cells [J]. Nanomaterials, 2023, 11(2): 459.
[4] 李欣, 李芸, 王徐等. 面向可见光通信的硅基InGaN/GaN多量子阱波导定向耦合器光子集成芯片 [J]. 电子与信息学报, 2022, 44(8): 2695-2702. doi:  10.11999/JEIT210758

Li Xin, Li Yun, Wang Xu, et al. Silicon-based InGaN/GaN multiple quantum well waveguide directional coupler photonic integrated chip for visible light communication [J]. Journal of Electronics & Information Technology, 2022, 44(8): 2695-2702. (in Chinese) doi:  10.11999/JEIT210758
[5] Sharma A K , Pandey A K. Metal oxide grating based plasmonic refractive index sensor with Si layer in optical communication band [J]. IEEE Sensors Journal, 2019, 20(3): 1275-1282.
[6] 刘巧莉, 刘畅, 王艺潼, 郝凌翔, 黄永清, 胡安琪, 郭霞. 硅单光子探测器研制及其在高精度星地时间比对中应用(特邀) [J]. 红外与激光工程, 2021, 50(1): 20211004. doi:  10.3788/IRLA20211004

Liu Qiaoli, Liu Chang, Wang Yitong, et al. Development of silicon single photon detector and its application in high-precision satellite-to-ground time comparison (Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211004. (in Chinese) doi:  10.3788/IRLA20211004
[7] Katiyar A K, Thai K Y, Yun W S, et al. Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering [J]. Science Advances, 2020, 6(31): abb0576. doi:  10.1126/sciadv.abb0576
[8] Chen W, Liang R, Zhang S, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure [J]. Nano Research, 2020, 13(1): 127-132. doi:  10.1007/s12274-019-2583-5
[9] Saadabad R M, Pauly C, Herschbach N , et al. Highly efficient near-infrared detector based on optically resonant dielectric nanodisks[J]. Nanomaterials, 2021, 11(2): 428.
[10] Liang Y, Fei Q, Liu Z, et al. Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates [J]. Photonics Research, 2019, 7(3): A1-A6. doi:  10.1364/PRJ.7.0000A1
[11] Zhang J, Wang H, Zhang G, et al. High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection. [J]. Optics letters, 2021, 46(11): 2670-2673. doi:  10.1364/OL.424606
[12] Xie Z, Deng Z, Zou X, et al. InP based near infrared/extended-short wave infrared dual-band photodetector [J]. IEEE Photonics Technology Letters, 2020, 32(16): 1003-1006. doi:  10.1109/LPT.2020.3008853
[13] Syu H J, Huang Y C, Su Z C, et al. An alternative to compound semiconductors using a Si-based IR detector [J]. IEEE Transactions on Electron Devices, 2022, 69(1): 205-211. doi:  10.1109/TED.2021.3130566
[14] Li N, Tian Y, Bao J, et al. Design of broadband high efficiency absorption antenna based on metamaterial nano-ring array [J]. Frontiers in Materials, 2022, 9: 1012936. doi:  10.3389/fmats.2022.1012936
[15] Aïssa B, Ali A, Pereira R N, et al. Preparation of plasmonic Ag and Au nanoparticle interfaces for photocurrent enhancement in Si solar cells[C]//2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), 2022.
[16] 廖同庆, 彭露露, 吴昇, 刘波, 肖广东. 基于光学微结构减小硅太阳能电池的反射 [J]. 红外与激光工程, 2015, 44(1): 201-204. doi:  10.3969/j.issn.1007-2276.2015.01.034

Liao Tongqing, Peng Lulu, Wu Sheng, et al. Reduce reflected light from silicon solar cells based on optical microstructure [J]. Infrared and Laser Engineering, 2015, 44(1): 201-204. doi:  10.3969/j.issn.1007-2276.2015.01.034
[17] Kantor Y , Bergman D J. The optical properties of cermets from the theory of electrostatic resonances [J]. Journal of Physics C: Solid State Physics, 1982, 15(9): 2033-2042.
[18] Sancho-Parramon J. Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects [J]. Nanotechnology, 2009, 20(23): 235706. doi:  10.1088/0957-4484/20/23/235706
[19] Lu J Y, Raza A, Fang N X, et al. Effective dielectric constants and spectral density analysis of plasmonic nanocomposites [J]. Journal of Applied Physics, 2016, 120(16): 163103. doi:  10.1063/1.4966119
[20] Mei Zhonglei, Zhang Li, Cui Tiejun. Recent advances on metamaterials [J]. Science & Technology Review, 2016, 34(18): 27-39. (in Chinese)
[21] Piralaee M, Asgari A. Modeling of optimum light absorption in random plasmonic solar cell using effective medium theory [J]. Optical Materials, 2016, 62: 399-402. doi:  10.1016/j.optmat.2016.10.021
[22] Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells [J]. Journal of Applied Physics, 2007, 101(9): 093105. doi:  10.1063/1.2734885