[1] Vahala K J. Optical microcavities [J]. Nature, 2003, 424: 839-846. doi:  10.1038/nature01939
[2] Chen H, Xiao Y. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited) [J]. Infrared and Laser Engineering, 2021, 50(11): 20210560. (in Chinese) doi:  10.3788/IRLA20210560
[3] Dong C H, Wang Y D, Wang H L, et al. Optomechanical interfaces for hybrid quantum networks [J]. National Science Review, 2015, 2(4): 510-519. doi:  10.1093/nsr/nwv048
[4] Vollmer F, Yang L. Review label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices [J]. Nanophotonics, 2012, 1: 267-291. doi:  10.1515/nanoph-2012-0021
[5] He L, Ozdemir S K, Yang L. Whispering gallery microcavity lasers [J]. Laser and Photonics Reviews, 2013, 7(1): 60-82. doi:  10.1002/lpor.201100032
[6] Song Q H. Emerging opportunities for ultra-high Q whispering gallery mode microcavities [J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 074231.
[7] Kippenberg T J, Holzwarth R, Diddams S A. Microresonatorbased optical frequency combs [J]. Science, 2011, 332(6029): 555-559. doi:  10.1126/science.1193968
[8] Jin W, Yang Q F, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high Q microresonators [J]. Nature Photonics, 2021, 15(5): 346-353. doi:  10.1038/s41566-021-00761-7
[9] Lu X, Moille G, Li Q, et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics [J]. Nature Photonics, 2019, 13(9): 593-601. doi:  10.1038/s41566-019-0464-9
[10] Kippenberg T J, Vahala K J. Cavity optomechanics: Backaction at the mesoscale [J]. Science, 2008, 321(5893): 1172. doi:  10.1126/science.1156032
[11] Wan S, Niu R, Ren H L, et al. Experimental demonstration of dissipative sensing in a self-interference microring resonator [J]. Photonics Research, 2018, 6(7): 681-685. doi:  10.1364/PRJ.6.000681
[12] Xue X X, Zheng X P, Zhou B K. Super-efficient temporal solitons in mutually coupled optical cavities [J]. Nature Photonics, 2019, 13: 616-622.
[13] Chen H J, Ji Q X, Wang H M, et al. Chaos-assisted two-octave-spanning microcombs [J]. Nature Communications, 2020, 11: 2336. doi:  10.1038/s41467-020-15914-5
[14] Lu Z Z, Chen H J, Wang W Q, et al. Synthesized soliton crystals [J]. Nature Communications, 2021, 12: 3179. doi:  10.1038/s41467-021-23172-2
[15] Weng H Z, Liu J, Afridi A A, et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator [J]. Photonics Research, 2021, 9(7): 1351. doi:  10.1364/PRJ.427567
[16] Wang C L, Fang Z W, Yi A L, et al. High-Q microresonators on 4 H-silicon-carbide-on-insulator platform for nonlinear photonics [J]. Light: Science & Applications, 2021, 10(1): 1-11.
[17] Bai Y, Zhang M, Shi Q, et al. Brillouin-kerr soliton frequency combs in an optical microresonator [J]. Physical Review Letters, 2021, 126: 063901. doi:  10.1103/PhysRevLett.126.063901
[18] Wang J, Lu Z, Wang W, et al. Long-distance ranging with high precision using a soliton microcomb [J]. Photonics Research, 2020, 8(12): 1964-1972. doi:  10.1364/PRJ.408923
[19] Wang W, Wang L, Zhang W. Advances in soliton microcomb generation [J]. Advanced Photonics, 2020, 2(3): 34001.
[20] Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator [J]. Nature Communications, 2021, 12: 6716. doi:  10.1038/s41467-021-26740-8
[21] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics [J]. Nature, 2018, 557(7703): 81-85. doi:  10.1038/s41586-018-0065-7
[22] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications [J]. Nature, 2017, 546(7657): 274-279. doi:  10.1038/nature22387
[23] Newman Z L, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock [J]. Optica, 2019, 6(5): 680-685. doi:  10.1364/OPTICA.6.000680
[24] Wang F X, Wang W, Niu R, et al. Quantum key distribution with on-chip dissipative kerr soliton [J]. Laser & Photonics Reviews, 2020, 14: 1900190.
[25] Liu K, Jin N, Cheng H, et al. 720 million quality factor integrated all-waveguide photonic resonator [C]//2021 Device Research Conference (DRC), 2021: 1-2.
[26] Puckett M W, Liu K, Chauhan N, et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth [J]. Nature Communications, 2021, 12: 934. doi:  10.1038/s41467-021-21205-4
[27] Liu J, Huang G, Wang R N, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits [J]. Nature Communications, 2021, 12: 2236. doi:  10.1038/s41467-021-21973-z
[28] Shaw M J, Guo J, Vawter G A, et al. Fabrication techniques for low-loss silicon nitride waveguides [C]//Proc of SPIE, 2005, 5720: 109-118.
[29] Tang X, Bayot V, Reckinger N, et al. A simple method for measuring si-fin sidewall roughness by afm [J]. IEEE Transactions on Nanotechnology, 2009, 8(5): 611-616. doi:  10.1109/TNANO.2009.2021064
[30] Ji X, Barbosa F A S, Roberts S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold [J]. Optica, 2017, 4(6): 619. doi:  10.1364/OPTICA.4.000619
[31] Liu J, Raja A S, Karpov M, et al. Ultralowpower chip-based soliton microcombs for photonic integration [J]. Optica, 2018, 5(10): 1347. doi:  10.1364/OPTICA.5.001347
[32] Wan S, Niu R, Wang Z Y, et al. Frequency stabilization and tuning of breathing solitons in Si3 N4 microresonators [J]. Photonics Research, 2020, 8(8): 1342-1349. doi:  10.1364/PRJ.397619
[33] Wan S, Niu R, Peng J L, et al. Fabrication of the high-Q Si3 N4 microresonators for soliton microcombs [J]. Chinese Optics Letters, 2022, 20(3): 032201. doi:  10.3788/COL202220.032201
[34] Moille G, Westly D, Orji N G, et al. Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion [J]. Applied Physics Letters, 2021, 119(12): 121103. doi:  10.1063/5.0061238
[35] Hu Y, Yu M, Zhu D, et al. On-chip electro-optic frequency shifters and beam splitters [J]. Nature, 2021, 599(7886): 587-593. doi:  10.1038/s41586-021-03999-x
[36] Dey R K, Cui B. Stitching error reduction in electron beam lithography with in-situ feedback using self-developing resist [J]. Journal of Vacuum Science & Technology B, 2013, 31(6): 06F409.
[37] Lu Z, Wang W, Zhang W, et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator [J]. AIP Advances, 2019, 9: 025314. doi:  10.1063/1.5080128
[38] Niu R, Wan S, Wang Z Y, et al. Perfect soliton crystals in the high Q microrod resonator [J]. IEEE Photonics Technology Letters, 2021, 33(15): 788-791. doi:  10.1109/LPT.2021.3096645
[39] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities [J]. Light: Science & Applications, 2019, 8(1): 1-10.
[40] Li J, Wan S, Peng J L, et al. Thermal tuning of mode crossing and the perfect soliton crystal in a Si3 N4 microresonator [J]. Optics Express, 2022, 30(8): 13690. doi:  10.1364/OE.450100
[41] Ji X, Liu J, He J, et al. Compact, spatial-mode-interaction-free, ultralowloss, nonlinear photonic integrated circuits [J]. Communications Physics, 2022, 5(1): 1-9.
[42] Pfeiffer M H P, Liu J, Raja A S, et al. Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins [J]. Optica, 2018, 5(7): 884. doi:  10.1364/OPTICA.5.000884